2018 物联网产业分布展望:基础设施将到位

  最后,不得不说 5G 的希望也很大,它的数据传输速度更快,更适合像自主驾驶汽车这样竞争激烈的物联网用例。但这要等到实现广泛的部署之后才可以,在美国,可能还需要十年的时间。

  构建模块

  云端巨头都瞄准了物联网

  云端一直是物联网领域热议的话题之一,但最近几年却让我们看到了很多不确定性。一方面,云服务巨头企业似乎都认为他们的核心云产品无需做出多少额外的努力就能满足物联网的需求。另一方面,各种各样的物联网企业都开始尝试构建自己的云产品。

  2017 年,这一问题迅速改观。微软增加了许多重要的功能(为那些不想自己管理云端的物联网客户提供了一个用于完全托管的 SaaS 产品 IoT Centra;用于边缘计算的 Azure IoT Edge;时间序列数据库Time Series Insights),亚马逊也不甘落后(让简单设备可以触发 Lambda 的 AWS IoT One-Click;保护物联网设备的 AWS IoT Device Defender;规模化远程管理物联网设备的 IoT Device Manager)。也许最能说明问题的或许是,Google 也加入了这一阵营,推出了能够大规模连接和管理远程物联网设备的 IoT Cloud Core,并与包括 BigQuery、Dataflow 和 Pub / Sub 在内的 Google Cloud 产品进行了整合。

  与此同时,通用电气不再执着于构建自己的“Predix Cloud”,转而专注于在 AWS 上构建应用程序。我们接触的几家初创公司也暂时搁置了他们自己创建云技术的计划,转而关注将设备数据发送给大型公共云提供商这一解决方案。

  强大的云基础设施的出现是物联网领域的一个重大进展,因为这样能够大大降低设计和安全部署物联网设备的总体复杂性,这在之前一直是阻碍物联网领域发展的最大障碍之一。

  诚然,云计算可能无法适用于所有的物联网客户,尤其是对数据高度保护的工业领域客户来说更是这样。值得庆幸的是,边缘计算的出现将有助于这些客户在本地处理他们的数据。

  边缘计算的兴起

  边缘计算在此之前已经是一个热门话题,但在 2017 年,我们看到了边缘计算真正的飞跃。边缘计算一般是指将智能从云端推向边缘,包括网关、设备甚至是传感器。在某些情况下,边缘会过滤掉噪声,只将最相关的数据发送到云端,以减少处理环节和成本;在有些情况下,需要在当地做出一些决定,进一步采取行动。所有这些通常都支持机器学习和 AI 在本地设备运行。

  不仅是初创企业(包括雾计算平台开发商 Foghorn 和 Mythic 等)在边缘计算和分析方面进行了一些有趣的探索,在过去一年的时间里,科技巨头也开始纷纷进军边缘计算领域。自 2016 年以来,AWS 推出 Greengrass、微软推出 Azure IoT Edge、戴尔宣布在边缘计算领域投资 1 亿美元、获得包括戴尔在内的 50 多家贡献者支持的开源项目 Edge X Founder 也在 2017 年春季推出。

  总结

  在过去一年左右的时间里,我们可能已经看到许多消费级物联网初创企业失败的报道,但这些个例不应该分散我们对于物联网领域整体的关注度:随着 AI 技术的加速、连接方面的重大进展以及大型云供应商专用物联网产品的推出,物联网发展所需的基础设施部分已经逐渐到位。当然在物联网安全等重要的方面还有很多工作要做。

  一波新技术浪潮出现之后的一个重要特征是“逐渐发展,然后迅猛崛起”。物联网的各个细分领域将继续保持各自的发展步调,但是随着核心基础设施到位,我们很快就会发现物联网朝着全球互联的物理世界这一方向呈现出指数级加速发展趋势。

 

  原文链接: http://mattturck.com/iot2018/