物联网安全如何从机器学习中受益

  “当涉及到物联网设备,它们被设计来做一个非常,非常具体的功能,”该公司联合创始人兼首席执行官Yossi Atias说。“因此,假设我们有很多用户使用相同的摄像头或相同的智能电视或相同的智能报警或智能锁,没有真正的原因表明一个设备会表现出不同于其他的行为,因为他们都运行相同的软件,而这不是用户可以改变的。”

  Dojo-Labs实验室的方法涉及从不同的端点收集元数据和定义每个设备类型的行为范围,以便能够发现并阻止恶意行为。正如所有的解决方案涉及机器学习,Dojo-Labs实验室的模型由于收集越来越多的客户数据而改进了。

  该解决方案包括一个安装在家庭网络中的鹅卵石状设备,允许用户控制设备和监控网络状态的移动应用程序和一个云服务器,在云服务器上通过使用专有的统计技术和数学模型,再加上机器学习算法来综合和分析数据。

  还有一些关于机器学习的注意事项

  机器学习是很有前途的,但它仍然处于起步阶段,还有很长的路要走。决不可以把它视为本身就是一个完整的解决方案。“[机器学习]将几乎无处不在,”Veeramachaneni说。“为了在企业或在物联网领域获得安全,你必须要有强大的机器组织数据,分析数据,寻找数据中的模式。但你也需要人的直觉来发现新的攻击,并训练系统阻止这些新的(和旧的)攻击。”

 

  Veeramachaneni称这种组合为“增强智能(augmented intelligence)”,缩写为AI,这是人和机器的力量汇聚以战胜网络威胁。他说:“机器学习和人类都无法单独做到”。