3. 分离的Haar特征,即允许一个Haar特征由多个互相分离的黑白区域来计算,而不要求黑白区域必须处于一个矩形小块中;
4. 对角型Haar特征;
5. 组合Haar特征,即对多个不同的Haar特征进行组合和二值编码;
6. 局部组合二值特征,即在局部对特定的Haar特征按照一定的结构进行组合和二值编码;
7. 带权多通道Haar特征,即一个Haar特征不再只包含黑白两种块,而允许有多种不同形状和不同颜色的块,其中不同的颜色对应着不同的权值,表示像素点上求和之后所占的比重——原来只有1和-1两种,多通道指的是在像素点上求和不仅仅是在灰度这一个通道上计算,而是同时在其它通道上计算(如RGB三个颜色通道;事实上,基于原图计算而来和原图同样大小的任何一张图都可以是图像的一个通道)。
这些扩展极大地增强了Haar特征的表达能力,使得人脸窗口和非人脸窗口之间具有更好的区分性,从而提高了分类的准确度。
除了直接对Haar特征进行改进,人们也同时在设计和尝试其它特征。Haar特征本质上是局部区域像素值的一种线性组合,其相对应的更一般的形式则是不指定线性组合的系数,允许系数为任意实数,这被称之为线性特征——这里的组合系数可以基于训练样例来进行学习,类似于学习分类器参数的过程。稀疏粒度特征也是一种基于线性组合来构造的特征,与线性特征所不同的是,稀疏粒度特征是将不同尺度(将100*100的图像放大到200*200,它和原本大小就为200*200的图像是处于不同的尺度上)、位置和大小的局部区域进行组合,而线性特征只是组合同一个局部区域内的像素值。
LBP特征是一种二值编码特征,其直接基于像素灰度值进行计算,特点是在编码时考虑的是两个值的相对大小,并且按照一定的空间结构来进行编码,局部组合二值特征就是在LBP特征的启发下设计的;从计算上来看,提取LBP特征比提取Haar特征要快,但是Haar特征对于人脸和非人脸窗口的区分能力更胜一筹。简化的SURF特征是一种和Haar特征相类似的特征,但是其计算的是局部区域中像素点的梯度和,并在求和的过程中考虑了梯度方向(所谓梯度,最简单的一种情形就是指同一行上两个不同位置像素值的差比上它们水平坐标的差);SURF特征比Haar特征更为复杂,因此计算代价更高,但是由于其表达能力更强,因此能够以更少数目的特征来达到相同的区分度,在一定程度上弥补了其在速度上的不足。HOG特征也是一种基于梯度的特征,其对一个局部区域内不同方向的梯度进行统计,计算梯度直方图来表示这个区域。积分通道特征和多通道的Haar特征有些类似,但是其使用的通道更加多样化,将通道的概念推广为由原图像变换而来并且空间结构和原图像对应的任何图像。聚合通道特征则在积分通道特征的基础上进一步加入了对每个通道进行下采样的操作,实现局部区域信息的聚合。
在过去十几年的探索过程中,涌现出的特征不胜枚举,这里只选取了部分比较有代表性和反映了人们探索思路的特征进行举例。这里所有列举的特征都有一个共同的特点:都由科研工作者根据自己的经验手工设计,这些特征的设计反映了人们对问题的理解和思考。虽然随着不断的改进,设计出的特征已经日臻完善,但直到现在,人们在特征上的探索还远没有结束。
分类器及其学习方法的改进
分类器能力的强弱直接决定了分类准确度的高低,而分类的计算代价是影响检测速度的一个关键因素,因此,人们探索的另一个方向就是对分类器及其学习方法的改进。
采用AdaBoost方法由弱分类器构建强分类器,这是一个顺序执行的过程,换言之,一旦一个弱分类器被选中,其就必定会成为强分类器的组成部分,不允许反悔,这其实是假设增加弱分类器一定会使得强分类器的分类准确度更高,但是,这个假设并不总是成立。事实上,每次对弱分类器的选择只是依照当时的情况决定,而随着新的弱分类器被增加进来,从整体上来看,之前的选择未必最优。基于这样的想法,出现了允许回溯的FloatBoost方法。FloatBoost方法在选择新的弱分类器的同时,也会重新考查原有的弱分类器,如果去掉某个弱分类器之后强分类器的分类准确度得到了提升,那说明这个弱分类器带来了负面影响,应该被剔除。