Apache Flink

  Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:流处理一般需要支持低延迟、Exactly-once保证,而批处理需要支持高吞吐、高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独立的开源框架来实现其中每一种处理方案。例如,实现批处理的开源方案有MapReduce、Tez、Crunch、Spark,实现流处理的开源方案有Samza、Storm。

  Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。基于同一个Flink运行时(Flink Runtime),分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。

  基本特性

  关于Flink所支持的特性,我这里只是通过分类的方式简单做一下梳理,涉及到具体的一些概念及其原理会在后面的部分做详细说明。

  流处理特性

  支持高吞吐、低延迟、高性能的流处理

  支持带有事件时间的窗口(Window)操作

  支持有状态计算的Exactly-once语义

  支持高度灵活的窗口(Window)操作,支持基于time、count、session,以及data-driven的窗口操作

  支持具有Backpressure功能的持续流模型

  支持基于轻量级分布式快照(Snapshot)实现的容错

  一个运行时同时支持Batch alt="物联网" width="550" height="414" />

  flink-streaming-dataflow-example

  上图中,FlinkKafkaConsumer是一个Source Operator,map、keyBy、timeWindow、apply是Transformation Operator,RollingSink是一个Sink Operator。

  Parallel Dataflow

  在Flink中,程序天生是并行和分布式的:一个Stream可以被分成多个Stream分区(Stream Partitions),一个Operator可以被分成多个Operator Subtask,每一个Operator Subtask是在不同的线程中独立执行的。一个Operator的并行度,等于Operator Subtask的个数,一个Stream的并行度总是等于生成它的Operator的并行度。

  有关Parallel Dataflow的实例,如下图所示:

物联网

  flink-parallel-dataflow

  上图Streaming Dataflow的并行视图中,展现了在两个Operator之间的Stream的两种模式:

  One-to-one模式

  比如从Source[1]到map()[1],它保持了Source的分区特性(Partitioning)和分区内元素处理的有序性,也就是说map()[1]的Subtask看到数据流中记录的顺序,与Source[1]中看到的记录顺序是一致的。

  Redistribution模式

  这种模式改变了输入数据流的分区,比如从map()[1]、map()[2]到keyBy()/window()/apply()[1]、keyBy()/window()/apply()[2],上游的Subtask向下游的多个不同的Subtask发送数据,改变了数据流的分区,这与实际应用所选择的Operator有关系。

  另外,Source Operator对应2个Subtask,所以并行度为2,而Sink Operator的Subtask只有1个,故而并行度为1。

  Task & Operator Chain

  在Flink分布式执行环境中,会将多个Operator Subtask串起来组成一个Operator Chain,实际上就是一个执行链,每个执行链会在TaskManager上一个独立的线程中执行,如下图所示:

物联网

  flink-tasks-chains

  上图中上半部分表示的是一个Operator Chain,多个Operator通过Stream连接,而每个Operator在运行时对应一个Task;图中下半部分是上半部分的一个并行版本,也就是对每一个Task都并行化为多个Subtask。

  Time & Window

  Flink支持基于时间窗口操作,也支持基于数据的窗口操作,如下图所示:

物联网

  flink-window

  上图中,基于时间的窗口操作,在每个相同的时间间隔对Stream中的记录进行处理,通常各个时间间隔内的窗口操作处理的记录数不固定;而基于数据驱动的窗口操作,可以在Stream中选择固定数量的记录作为一个窗口,对该窗口中的记录进行处理。