神经网络的直观解释

  接下来,5 x 5 的图像和 3 x 3 的矩阵的卷积可以按下图所示的动画一样计算:

物联网

  现在停下来好好理解下上面的计算是怎么完成的。我们用橙色的矩阵在原始图像(绿色)上滑动,每次滑动一个像素(也叫做“步长”),在每个位置上,我们计算对应元素的乘积(两个矩阵间),并把乘积的和作为最后的结果,得到输出矩阵(粉色)中的每一个元素的值。注意,3 x 3 的矩阵每次步长中仅可以“看到”输入图像的一部分。

  在 CNN 的术语中,3x3 的矩阵叫做“滤波器(filter)”或者“核(kernel)”或者“特征检测器(feature detector)”,通过在图像上滑动滤波器并计算点乘得到矩阵叫做“卷积特征(Convolved Feature)”或者“激活图(Activation Map)”或者“特征图(Feature Map)”。记住滤波器在原始输入图像上的作用是特征检测器。

  从上面图中的动画可以看出,对于同样的输入图像,不同值的滤波器将会生成不同的特征图。比如,对于下面这张输入图像:

物联网

  In the table below, we can see the effects of convolution of the above image with different filters. As shown, we can perform operations such as Edge Detection, Sharpen and Blur just by changing the numeric values of our filter matrix before the convolution operation 8 – this means that different filters can detect different features from an image, for example edges, curves etc. More such examples are available in Section 8.2.4 here.

  在下表中,我们可以看到不同滤波器对上图卷积的效果。正如表中所示,通过在卷积操作前修改滤波矩阵的数值,我们可以进行诸如边缘检测、锐化和模糊等操作 —— 这表明不同的滤波器可以从图中检测到不同的特征,比如边缘、曲线等。在 这里的 8.2.4 部分 中可以看到更多的例子。

物联网

  另一个理解卷积操作的好方法是看下面这张图的动画:

物联网

  滤波器(红色框)在输入图像滑过(卷积操作),生成一个特征图。另一个滤波器(绿色框)在同一张图像上卷积可以得到一个不同的特征图。注意卷积操作可以从原图上获取局部依赖信息。同时注意这两个不同的滤波器是如何从同一张图像上生成不同的特征图。记住上面的图像和两个滤波器仅仅是我们上面讨论的数值矩阵。

  在实践中,CNN 会在训练过程中学习到这些滤波器的值(尽管我们依然需要在训练前指定诸如滤波器的个数、滤波器的大小、网络架构等参数)。我们使用的滤波器越多,提取到的图像特征就越多,网络所能在未知图像上识别的模式也就越好。

  特征图的大小(卷积特征)由下面三个参数控制,我们需要在卷积前确定它们:

  深度(Depth):深度对应的是卷积操作所需的滤波器个数。在下图的网络中,我们使用三个不同的滤波器对原始图像进行卷积操作,这样就可以生成三个不同的特征图。你可以把这三个特征图看作是堆叠的 2d 矩阵,那么,特征图的“深度”就是三。

物联网

  步长(Stride):步长是我们在输入矩阵上滑动滤波矩阵的像素数。当步长为 1 时,我们每次移动滤波器一个像素的位置。当步长为 2 时,我们每次移动滤波器会跳过 2 个像素。步长越大,将会得到更小的特征图。

  零填充(Zero-padding):有时,在输入矩阵的边缘使用零值进行填充,这样我们就可以对输入图像矩阵的边缘进行滤波。零填充的一大好处是可以让我们控制特征图的大小。使用零填充的也叫做泛卷积,不适用零填充的叫做严格卷积。这个概念在下面的参考文献 14 中介绍的非常详细。

  非线性简介(ReLU)

  An additional operation called ReLU has been used after every Convolution operation in Figure 3 above. ReLU stands for Rectified Linear Unit and is a non-linear operation. Its output is given by: