尽管在最近的在线搜索中已经占据高的搜索量,深度学习仍然是一个相对较新的概念。由于在各个不同的领域都获得了巨大的成功,机器学习在研究和生产领域中大量涌现。机器学习是应用深度神经网络技术的一个过程——也就是有着多个隐藏层的神经网络构架——去解决问题。像数据挖掘一样,深度学习也是一个进程,它采用了神经网络构架——一种特定的机器学习算法。
近段时间来深度学习已经积累了可观的研究成果。据此,在我看来,将以下下几点牢记在心对机器学习十分重要:
机器学习不是万灵药——它不能够解决所有的问题。
它并不是一个传说中的大师级的算法——深度学习不能够替代其他机器学习的算法和数据科学的技术,或者说,至少它至今还未被证明可以
我们需要对它持以平和的期待——尽管最近各种分类问题,特别是计算机视觉和自然语言处理,强化学习以及其他领域都已取得显著进步,深度学习目前还没有到达可以解决诸如 “实现世界和平”这种复杂问题的水平。
深度学习和人工智能并非同义词。
深度学习可以通过向一大堆数据提供附加的操作和工具从而解决问题。由此,深度学习在数据科学领域是一个十分有用的辅助。
就像上图所示,深度学习深度学习之于数据挖掘,就像(深度)神经网络之于机器学习(进程VS构架)。同时我们也可以看到深度神经网络绝大程度属于当前人工智能的情况。两者概念相互交织几乎已经到了相同意思的程度(但实际上这两者并非相同的事物,人工智能除了神经网络还含有大量其他的算法和技术)同时,在深度学习过程和神经网络技术的带领下,近几年来在相关领域有了卓越的跨越。其中起重要作用的,深度学习/深度神经网络和计算机视觉,自然语言处理,生成模型之间的联系值得关注。由此,让我们通过简明扼要的定义,来了解深度学习和相关术语。
1.深度学习
就像上述定义的一样,深度学习是应用神经网络解决问题的过程。深度神经网络是有着至少一个隐藏层的神经网络(如下图)。像数据挖掘一样,深度学习所指的是一个特定的过程。其中采用了深度神经网络-一种特定的机器学习算法的框架。
2.人工神经网络(ANNs)
机器学习构架最早的灵感来源于生物大脑(尤其是神经元)深度学习就运用到了神经元的概念。事实上,单一的人工神经网络(并非深度神经网络)在很早之前就被发现,在过去已经能解决一些特定的问题。然而,相较于现在,目前的神经网络构架都被设计为包含数个隐藏层(除了简单的输入和输出层)。层数的增加提高了网络的复杂度,使得网络能够进行深度学习,成为一种更强大的问题解决工具。
实际上,人工神经网络ANN一族结构差别很大,因此,目前没有一个确切的神经网络定义。目前两个主流的适用于所有ANN的特征,一个是拥有一个可调整的权重集合,另一个是具有模拟输入信号到神经元的非线性功能的能力。
3.生物神经元
在生物和人工神经网络之间的关系已经有了明确的定义。大量传播开的出版物渲染出这样一个概念:ANN是某种对发生在人(或其他生物)大脑的过程的完全复制。这种观念显然是不准确的。充其量我们只能说早期的人工神经网络是受到生物学的启发。两者间抽象的关系不比原子的组成和功能与太阳系间的抽象关系明确。
也就是说,如果仅仅了解是什么启发了ANN,这提供了一种高层次的解读,可帮助我们去理解生物神经是如何工作的。
以下是我们对生物神经元的最感兴趣的部分,包括:
携带着遗传信息的细胞核(如DNA)
处理输入刺激并转化为输出刺激的细胞体。
从其他神经元接受刺激的树突。
信息传给其他神经的轴突。
轴突末端,和相邻树突之间形成的突触结构。