深度学习网络教你如何玩自拍!

从最佳(顶部)到最差(底部)自拍的连续体,由ConvNet判断。

挺有趣的,是吧?下面让我们看看这个卷积神经网络认为的最好的100张自拍图(从5万张图的测试集中选出)是什么样子的:

深度学习网络教你如何玩自拍!最好的100张自拍照,由卷积神经网络判断

要拍出一张好自拍,有如下要点:

1.首先你得是个女人. 女性的自拍一致地比男的自拍要好。特别是在前100张好自拍中,无一例外全是女性。

2.其次你的脸得占整个自拍的三分之一。注意到没有,在排名靠前的自拍图中,脸的位置和姿态出奇的一致。脸总是占据了整个图片的1/3,脸要微微侧过来一些,位置要在图片的中上方。

3.将你的额头截掉。至少对于女性来说它看起来像一个非常流行的策略。

4.展示你的长发,披肩长发能给你的自拍加分不少。

5.脸部要过饱和。光线过饱和在好自拍中经常出现, 这能让脸部看来更加光滑白皙。

6.要使用滤镜。黑白照看起来能加分, 大部分排名靠前的自拍看起来都用了某种滤镜是的整个图片带有淡出效果并能降低对比度。

7.加上边框。好自拍通常都会加上水平或者垂直的白边。

有趣的是,这里的有些原则在男性身上就行不通了。我从前2000张自拍中找出了所有男性自拍,如下图:

深度学习网络教你如何玩自拍!从2000自拍中选出来的几个最好的男性自拍

很明显,额头截断的情况没有出现。相反,大部分自拍都会用稍广的角度将整个脑袋都拍进去,还要露出肩膀。还有,大多数的男性头发稍长,发型浮夸,还精心把头发往上梳。不过,脸部过饱和这个特点还是能够看得出来。

看过了好自拍,让我们再来看看坏自拍是啥样的。这次,我把图片缩的很小让大家看不出来是谁,因为我的目的是让大家发现降低自拍质量的普遍模式是什么,而不是让大家看看拍了差自拍的都有谁。下图是卷积神经网络认为比较差的自拍,很显然,它们的点赞数一定很低:

深度学习网络教你如何玩自拍!

由卷积神经网络判断出的最糟糕的300万自拍

即便在这么低的分辨率下,我们还是能看出一些道道的。自拍时千万不要:

1.在弱光环境下自拍。非常明显, 那些很暗的照片 (通常也带有大量噪点) 肯定会被卷积神经网络打一个很低的分数。

2.把你的脑袋放太大。 这一条大概是因为没人愿意凑这么近看你的脸。

3.拍合照。和小伙伴们一起自拍是很有趣,不过这会让你的自拍减分。构图要简洁,你一个人出镜就够了,但也别占据镜头太多。

4.最后,区分一张自拍的好与差,很大程度上是看图片的风格,而不是看本人长得好不好。还有一点让我感到欣慰的是,那些露肉很多的自拍并不能让它们的得分变高。最开始的时候,我还担心这个屌炸天的卷积神经网络会变成一个露肉分辨器。看来是我想多了。

那么作为明星们的自拍又是如何呢?作为最后一个有意思的实验, 我试着让这个卷积神经网络给一些明星的自拍打个分。下图中,得分从上到下,从左至右依次减少:

深度学习网络教你如何玩自拍!

卷积神经网络为名人自拍做出的判断。最有吸引力的自拍:左上方

神奇的是,我们之前总结出来的一条经验规律(不要拍合照)在这次实验中不再有效了,像是艾伦·狄珍妮的知名合照,还有一些奥斯卡颁奖时候的合照得分都很高,排在了第二排。棒!

另一条经验规律(男的自拍都不行)被克里斯·帕拉特的裸上身自拍(也排在第二排)妥妥地打破了,还有一些男明星的自拍得分也很高,像是丁日的挑眉照,扣扣熊和肥伦的合照(排在第三排)。然而詹姆斯·弗兰科那近乎限制级的自拍(排在第四排)却并没有让我们的卷积神经网络留下很好的印象。