集智科学家张江解析:为什么复杂性需要深度学习?

  总而言之,长期以来复杂性科学就是一个非常具有包容性的学科。它是各种数理方法、工程技术的大熔炉。所以,将深度学习融入复杂系统是一个必然趋势。

  参考文献

  1.Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty.[J]. Science, 2016, 353(6301):790-794.

  2.Blumenstock J E. Fighting poverty with data[J]. Science, 2016, 353(6301):753-754.

  3.Helbing D, Moln T. Social Force Model for Pedestrian Dynamics[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 51(5):4282-4286.

  4.Hang Su, Yinpeng Dong, Jun Zhu, Haibin Ling, and Bo Zhang, Crowd Scene Understanding with Coherent Recurrent Neural Networks, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), 2016

  5.Wei Li , Melvin Gauci and Roderich Gro: Turing learning: a metric-free approach to inferring behavior and its application to swarms, https://arxiv.org/pdf/1603.04904v2.pdf

  6.T. Miklov: Efficient Estimation of Word Representations in Vector Space, 2013

  7.Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online Learning of Social Representations[J]. arXiv preprint arXiv:1403.6652, 2014.

  8.Aditya Grover, Jure Leskovec. node2vec: Scalable Feature Learning for Networks. KDD 2016.

  9.R Fu et al: Learning Semantic Hierarchies via Word Embeddings, Meeting of the Association for Computational Linguistics, 2014

  10.Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[J]. 2015.

  11.Defferrard M, Bresson X, Vandergheynst P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[J]. 2016.

  12.Niepert M, Ahmed M, Kutzkov K. Learning Convolutional Neural Networks for Graphs[J]. 2016.

  13.Mehta P, Schwab D J. An exact mapping between the Variational Renormalization Group and Deep Learning[J]. Computer Science, 2014.

 

  雷锋网原创文章,转载请注明来源出处