算法性能:快速排序最好情况下时间复杂度为O(nlogn),待排序列越接近无序,则该算法效率越高,在最坏情况下时间复杂度为O(n*n),待排序列越接近有序,则该算法效率越低,算法的平均时间复杂度为O(nlogn)。就平均时间而言,快速排序是所有排序算法中最好的。该算法的空间复杂度为O(logn),快速排序是递归进行的,需要栈的辅助,因此需要的辅助空间比前面几类排序方法要多。
快速排序的效率和选取的“枢轴”有关,选取的枢轴越接近中间值,算法效率就越高,因此为了提高算法效率,可以在第一次选取“枢轴”时做文章,如在数据堆中随机选取3个值,取3个值的平均值作为“枢轴”,就如抽样一般。关于具体如何提高快速排序算法的效率,在本文不做详细介绍了,点到为止。(感兴趣的读者可以自行去研究)
选择排序
算法思想:该算法的主要动作就是“选择”,采用简单的选择方式,从头至尾顺序扫描序列,找出最小的一个记录,和第一个记录交换,接着从剩下的记录中继续这种选择和交换,最终使序列有序。
- //选择排序
- Array.prototype.selectionSort = function() {
- for (var i = 0; i < this.length; ++i)
- {
- var index = i;
- for (var j = i + 1; j < this.length; ++j)
- {
- if (this[j] < this[index])
- index = j;
- }
- this.swap(i, index);
- }
- }
算法性能:将最内层循环中的比较视为基本操作,其执行次数为(n-1+1)*(n-1)/2=n(n-1)/2,其时间复杂度为O(n*n),本算法的额外空间只有一个temp,因此空间复杂度为O(1)。
堆排序
算法思想:堆是一种数据结构,最好的理解堆的方式就是把堆看成一棵完全二叉树,这个完全二叉树满足任何一个非叶节点的值,都不大于(或不小于)其左右孩子节点的值。若父亲大孩子小,则这样的堆叫做大顶堆;若父亲小孩子大,这样的堆叫做小顶堆。根据堆的定义,其根节点的值是最大(或最小),因此将一个无序序列调整为一个堆,就可以找出这个序列的最大(或最小)值,然后将找出的这个值交换到序列的最后(或最前),这样有序序列元素增加1个,无序序列中元素减少1个,对新的无序序列重复这样的操作,就实现了序列排序。堆排序中最关键的操作是将序列调整为堆,整个排序的过程就是通过不断调整使得不符合堆定义的完全二叉树变为符合堆定义的完全二叉树的过程。
堆排序执行过程(大顶堆):
(1)从无序序列所确定的完全二叉树的第一个非叶子节点开始,从右至左,从下至上,对每个节点进行调整,最终将得到一个大顶堆。将当前节点(a)的值与其孩子节点进行比较,如果存在大于a值的孩子节点,则从中选出最大的一个与a交换。当a来到下一层的时候重复上述过程,直到a的孩子节点值都小于a的值为止。
(2)将当前无序序列中第一个元素,在树中是根节点(a)与无序序列中最后一个元素(b)交换。a进入有序序列,到达最终位置,无序序列中元素减少1个,有序序列中元素增加1个,此时只有节点b可能不满足堆的定义,对其进行调整。