张亚勤:解读21世纪的智能计算

  如果我们仔细考究智能计算的发展历程,便会发现传统的人工智能研究可以算得上是成功的应用均集中在诸如电话应答、带宽预测、股票分析等方面,而成功的应用恰恰建立在注重积累和统计-而非规范-的自然语言处理以及语音识别等技术的基础上。故此,顺理成章的,假设机器可以学习便成为了智能计算的另一条思路。呱呱坠地的婴儿必须经历向家人、学校以及社会学习的过程,才能从本能阶段过渡到意识阶段,再由意识阶段过渡到思维阶段-成长的过程几乎等同于知识积累的过程,也就是不断扩大知识库的过程,况且成年人对于生活的正确认识,在相当大的程度上是建立在“统计学习”的基础之上的-如果机器也可以沿着这样的途径去“成长”,那么我们可以想象,至少图灵测试便可能在某些特定领域成为现实。另一个譬喻是教育方式,传统的研究思路有点像“灌输式教学”,其弊端在于忽视了培养机器学生的自我学习能力。在现实中,被这种教学模式所困扰的人类学子只能自行找寻规律,但恐怕计算机不会聪明到这种地步,因此,我们在把更多的知识和思维规范传授给计算机的同时也需要更多地把方法、统计数据传授给它。从具体的操作步骤来看,首先研究者需要把那些最简单的人类行为规则翻译为机器能够理解的语言,在此基础上不断把更多的行为模式传授给机器,这样机器就处在某种不断学习完善的状态下,学到的越多,机器就越“聪明”,直至最终人们无法准确定义机器可能做出的回馈-这也就是我曾提起过的智能人工的概念(Intelligent Agent)。这一“自下而上”的新的研究方向正引起来自各方面越来越多的关注。

  有趣的是,“自下而上”这一新的研究方向的一些基础性理论是由专注于研究量子力学的物理学家约翰·霍普佛德(John Hopfield)提出的。70年代末,他在一次偶然出席的人工智能年会上惊奇地发现,济济一堂的学者们居然无法清晰解释其研究项目的理论规范。于是他想到既然物质结构可以用量子力学的理论去剖析,那么人脑的神经元运动是否也有着与原子运动相仿佛的规律,再深入想想,如果让机器的“思维运动”去模仿人脑的神经元运动,不就在某种程度上找到了让机器更像人的可行途径了吗?约翰·霍普佛德的发现最终构成了智能计算的物理学支点。另一个支点是伯克利大学的一位数学教授、模糊集合的创立者Lofti Zadeh提出的所谓“软计算”的概念,这一概念恰好抓住了人脑思维的模糊性和不确定性的特征。

  由此我们可以发现,智能计算实际上是一门跨越包括物理学、数学、计算机科学、电子机械、通讯、生理学、进化理论和心理学等等学科在内的深奥科学,那么,在现今的阶段,我们对于智能计算的研究已经达到何种境界了呢?这个问题的答案建立在人类对智能层次的认识基础上。让我们把智能的形态粗略地划分为三个层次,最底层即所谓“操作层”,这一层的智能特征表现为本能,对人类来说便是呼吸心跳、血液循环、咽食排泄等,但若“智能”仅限于此,那便只能是植物人;中间一层是所谓“感知层”,这一层的智能特征表现为感觉和知觉,对人类来说便是视听、嗅味、触等能力、记忆力和简单地传递信息的能力;最上层是所谓“认知层”,这一层的智能特征表现为复杂的思维与行动能力,对人类来说便是通过语言相互交流,通过观察作出判断、推理,设定目标并设法完成它们。目前,我们已经很欣喜地看到一些由智能计算研究所带来的便利-例如我们的桌面办公系统具备了“拼写检查”和“自动更正”功能,这大大减少了那些我们不经意的错误;又如在网上冲浪时,我们大可不必在恒河沙数般繁多的网页中逐页查询感兴趣的信息,利用智能检索功能(当然现在还不完善)你便可以很轻松的找到你所确实需要的内容。但必须承认,我们有关智能计算的种种研究大都还处在初级阶段,我们所研究出的智能机器大约还只介于操作层面与感知层面之间。工业用机器人只是能够精准地完成某些动作,“深蓝”或“更深的蓝”只能在国际象棋这一特殊环境下精准地“思维”,至于“会与主人沟通的机器狗”以及“会踢足球的机器人”也还只是可以精准地重复制造者预设的语言或动作而已。

  无论是人工智能,抑或是智能人工,目前来看暂时都还很难使“智能机器”真正具备人类的常识-例如分辨人们音容笑貌(也许还需要20年),当然也就更谈不上产生属于机器自身的“自我意识”(也许需要50年甚至更久)。不仅可以执行目标,而且可以自行制定目标的智能机器何时诞生,一切都取决于智能计算的进一步发展。但我们可以大胆预测的一点是,在某些特定专业领域,肯定会出现那种使人类的脑力和体力空前解放的机器助手。这些智能计算机的智商或许比不上一名5岁的儿童,但其所具备的专业知识却会远远超过那一领域世界上任何一位专家。