文献(22)和(23)介绍了直流传动系统的ANN控制,给出了理论和实验结果。文献(9)讨论了直流传动的模糊神经速度控制器。这是文献中记载的第一次用单神经控制器成功替代双环直流传动系统的常规速度和电流PI调节器的例子。相对地上面讨论过的直流传动系统,该系统运用了更多的智能技术,系统得到了进一步的简化。有趣的是相对于古典多环PI调节器的实现,这里的电枢电流控制主要起限制电枢电流的作用,并且是通过单个速度、电流组合的模糊神经控制器“自动”加以实现。
(二)人工智能在交流传动中的应用
1.模糊逻辑的应用
在大多数讨论模糊逻辑在交流传动中运用的文章中,都介绍的是用模糊控制器取代常规的速度调节器,可英国Aberdeen大学开发的全数字高性能传动系统中有多个模糊控制器(4),这些模糊控制器不仅用来取代常规的PI或PID控制器,同时也用于其他任务。该大学还把模糊神经控制器用于各种全数字高动态性能传动系统开发中。也有一些优秀的文章论述运用模糊逻辑控制感应电机的磁通和力矩。讨论这种技术的第一篇文章发表于1992年(24)。该文中讨论了两种控制策略,如用第一种策略,规则表有36条规则,模糊控制器的输入是磁通和转矩误差,根据转矩和磁通误差,改变磁通矢量的辐值和旋转方向,反模糊化技术用到的是中心梯度法,第一种策略没有考虑最优电压矢量选择的梯度。而第二种策略考虑了,这种方案被成功地实现了。
我是应届生
Galvan的两篇文章(25)、(26)讨论了用模糊化速度控制器实现感应电机的矢量控制的方法。并给出了仿真结果。(也见3.1.1节讨论的模糊化控制器)。矢量控制器也是一种间接控制类型,并且很好的特性。文献(27)提出了一种模糊逻辑速度控制器。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。文献(28)给出了矢量控制器感应电机驱动系统的仿真结果。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。常规PI控制器用来稳定系统的稳态速度响应。矢量控制器使用转子磁通观测器观测(UI观测器,iw观测器(1)(4)),模糊逻辑用于转子电阻的估计。
到目前为止,只有两种运用人工智能技术的工业产品,其一是下节介绍的安川矢量变频器,另一个是日立矢量变频器,日立公司最近开发了J300系列IGBT矢量变频器,功率范围是5.5KW--55KW。它的主要特点是使用无传感器矢量控制算法和强大的自调整功能。无传感器磁通矢量控制方案采样两相定子电流,在初始自整定阶段,电机和负载的惯性以及其他参数例如定子电感,定子和转子电阻、励磁电感等参数被计算。日立公司宣称这是世界上第一台使用模糊控制的变频器。它考虑了电机和系统的特性,转矩计算软件在整个频率范围保证了转矩的精确控制。变频器的主要性能指标如下:1Hz时150%或更高的启动转矩;在3∶1的速度范围(20到60HZ/16到50HZ)电机不用降低功率使用;速度调节比率小于。
www.54yjs.cn
J300系列变频器由于使用了高速微处理器和内置DSP,因此具有很的响应速度,转矩响应速度大约可达到0.1秒。它使用模糊逻辑控制电机电流和加减速斜率。它能根据电机负载和制动需要计算加减速的最优时间,因此不需要尝试法进行调整。模糊逻辑加减速度函数根据模糊规则设定加减速度比例因子和速度,而模糊规则则用当前值与过载限幅(或其它限幅)值的差值以及电机电流和电压的梯度作为输入变量。梯度和差值构成四个隶属函数,两个隶属函数是三角函数,另二个是半梯形。当用常规的简单电流限幅控制,变频器的斜率是步进型的,经常引起变频器跳闸。特别是在减速时。当用模糊逻辑控制时,斜率十分平滑,变频器假跳闸的现象也消除了。变频器在风机和泵类的运用最能体现模糊逻辑控制的优势。在这些应用中,不需要恒定的加减速时间或精确的位置控制。在这些应用中,不需要恒定的加减速时间或精确的位置控制。需要的是与负载条件有关的加减速度的最优化。模糊控制能实现加减速度的最优控制。
AI控制器也能提高直接转矩控制系统的性能,这也是值得深入研究的一个宽广领域。英国Aberdeen大学的研究人员开发了基于人工智能的开关矢量选择器以及速度、转矩、磁通观测器等,初步结果令人鼓舞(9)。可以预见不久的将业,将会得到更好的结果,将会出现更多的工业应用产品(47)(48)。