若干年来,人工智能一直面临着应用范围有限的尴尬。但是随着研究的深入和技术的不断成熟,人工智能将越来越切实可行。
- 沈建苗 编译
Stair是一台样子古怪的设备,像一个架在轮椅上的花架,但是实际上它是一部人工智能机器人。
坐在会议室桌旁边的工作人员对Stair说: “Stair,请从实验室拿来订书机。”站在旁边的Stair回复道: “我会为您去拿订书机。”如果仔细分辨,Stair说话时,还带着一种鼻音。
Stair迅速启动——它靠两个轮子行进,在实验室内自由穿行,一路上自如地避开各种障碍物。它的“眼睛”是一部立体照相机,这对“大眼睛”不断灵活地来回转动,拍下房间里面的内容,以确定行进的路径以及判断哪些是障碍物。
Stair穿过零乱的实验室后,来到一张桌子前,似乎考虑了一下后,仔细打量了桌子上的长方形金属物体——订书机。然后它伸出关节臂,转来转去,用外面裹以橡胶的长长手指缓缓地夹起了订书机,然后原路返回会议室。Stair将订书机交给工作人员说: “给您订书机。祝您今天过得愉快。”
以上的场景并不是出现在科幻电影或书籍中,而是在现实生活中活生生地存在着。
如今,人工智能领域研究人员的心情越来越好,他们所研究的成果在不断地取得突破。尽管Stair的表现与替主人捡报纸的小狗相比似乎强不了多少,但这在几年前还是不敢想象的。
Stair代表了新一代的人工智能,集成了学习、视觉、导航、操纵、规划、推理、语音和自然语言处理等多项技术。它还标志着人工智能从细分的狭小领域,进入到系统能够学会处理复杂数据、适应不确定情况的现实世界。
咸鱼翻身
人工智能在自身发展中,经历了不少磨砺。技术先在幕后隐藏了几年,经过一轮轮炒作后,突然闪亮登场。随后要是技术没有兑现不切实际的承诺,就名誉扫地。取得了显著成就后,终于被人们所接受。
人工智能步入壮年期
人工智能起源于上世纪50年代末期,后来在80年代凭借“专家系统”而备受瞩目。专家系统先与真实世界的专家(比如国际象棋冠军)“过招”,然后通过软件把专家的一套逻辑规则编入到系统中。如果情况A发生,就做X,如果情况B发生,就做Y。微软研究部门的人工智能研究人员Eric Horvitz表示: “尽管专家系统在处理下棋等特殊的任务时表现不俗,但它们实际上‘功能很弱’。”
Horvitz认为,专家系统的作用主要是获取大量的人类知识,然后设法把这些知识组合成具有人类推理本领的推理系统。但是它们无法“扩展”,也就是说无法适应编程人员之前没有明确预料到的情况。
如今,人工智能系统已经发展到可以在“非常庞大而复杂的世界”执行有用的工作。Horvitz说: “因为这些小小的软件代理无法完整地表现这个世界,它们对自己该执行什么样的动作并不确定。于是,它们学习了解各种事情出现的概率,它们学习用户偏好,它们变得有了自我意识。”
这些功能来自于所谓的机器学习,这项技术是许多现代人工智能应用的核心。实质上,编程人员最初为自己要解决的某个问题建立一个简陋模型,然后添加让软件能够通过经验不断适应、完善的功能。以语音识别软件为例,这一类软件日臻完善,已经能学会察觉人的声音的细微变化。比方客户在网上购物时,通过声音输入,一些网站就能够更准确地预测客户的购物偏好。
数据是关键
机器学习当然离不开灵巧的算法,但是近些年来促使机器学习备受瞩目的背后原因是,现实生活中存在大量数据可供分析使用,这些数据来自互联网以及数量激增的物理传感器。Carlos Guestrin是卡内基·梅隆大学的计算机学和机器学习助理教授,他专注于传感器、机器学习和优化等技术。
Guestrin说: “南加州大学和加州大学洛杉矶分校的科学家们把传感器装在机器人船上,以便检测及分析大片水域的破坏性赤潮。人工智能通过算法学会预测水藻的地点和成长情况。相似的是,卡内基·梅隆大学的研究人员把传感器装在地方供水系统中,以便检测及预测污染物的扩散。在这两种情况下,机器学习都逐渐提高了预测的准确性,而优化算法知道把成本高昂的传感器放在哪个地方最适合。”