人工智能的新范式:基于行为的AI研究


80年代中后期兴起的这种新的人工智能研究思路,有人把它称为“自主Agent研究” (Autonomous Agent Research),也有人称之为“基于行为的AI”或“自下而上的AI”,以区别于经典的“基于知识的AI”,或“自上而下的AI”。也就是在这时,兰顿发起了首届人工生命的国际研讨会,宣布一门新的学科:人工生命的诞生。兰顿认为,人工生命的最终目标是建立具有智能的人工生命。但人工生命不是直接走向智能,而是先从研究低层生命开始。某种低层生命构件的存在提示我们寻找解决智能问题的新方法,从而有计划有逻辑地取代其它方法。可以看出,兰顿的感觉和威尔逊、布鲁克斯等人通过对相对简单的生物行为进行研究使机器人先具有低层次的智能的思想极为相似。正由于此,基于行为的人工智能研究与人工生命融合在一起,成为人工生命的一个重要组成部分。它们相互补充,相互推动:一方面,人工生命为基于行为的AI在科学上的合法性提供了一个新的理论基础和广阔的活动空间;另一方面,基于行为的AI也丰富了人工生命的研究,成为人工生命的一个重要组成部分。

三、自主机器人的包容结构

由于传统人工智能集中在“推理”上,所以,在建造机器人时,采取的是“感觉-建模-计划-行动”(sense-model-plan-act)框架。正如前面所说,早期的机器人都被放置在简单的人工世界中,它们感觉这个世界,然后思考它,努力建立关于这个世界的二维或三维的模型。接着,它们根据这些模型做出计划,并通过这种计划使机器人产生获得特定目标的行为。

但布鲁克斯认为,机器人从感觉到行动完全不必如此复杂,只需要两个步骤就可以:即感觉,然后行动。机器人感觉到某种东西,然后对这种感觉做出反应,完全没有必要有“构建模型”和“做出计划”两步。如何把这种思想变为现实呢?布鲁克斯把机器人的不同行为看作是紧密交织在一起的类似模块化的东西。机器人在给定时刻根据它的感官接受的信息的不同,选择适当的行为。本质上,机器人的行为类似一个巨大的有限状态自动机。关于机器人的环境和当前状态的信息将根据规则得到处理,这些规则并行地运行,而机器人的行为则从这些运行可能导致的一系列持续的活动中突现出来。

布鲁克斯认为,运用这些新的观念,新的机器人可以放弃传统人工智能范式所要求的那些复杂的计划、映射(mapping)和认知等内容。新的机器人具有许多在适当时候能够触发其行为的模块层。模块层的最顶端的行为模块可能是“探索”(explore)模块;靠它下面的是“行走”模块;接着可能是一组更低层次的由腿部感官输入决定的行为。与传统的自上而下的运作不同,布鲁克斯的机器人从最低层开始向上活动。

由于这些过程允许一种行为包容控制另外一种行为,比如,利用低层次的行为让机器人应付外部世界,利用高层行为让机器人寻求目标,因此,布鲁克斯把他的理论框架称之为“包容结构”。包容结构与传统人工智能的中心控制模式完全不同,具有如下几个特点:(1)没有关于外部世界的中心模型的位置;(2)机器人的知觉、中心处理和制动系统紧密联系在一起;(3)通过在已有的网络中增加新的更多的行为网络,可以增强系统的能力;(3)层次与层次之间没有高低之分;(4)各种行为并行起作用。布鲁克斯认为,这种包容结构可以避免传统人工智能研究框架的认知瓶颈,并且可以利用它建造能够突现出复杂结构的行为。他相信,利用这种包容结构,就不会有任何障碍阻止我们建造越来越聪明的机器人,包括人类水平的智力。

四、艾伦、赫伯特和根格斯

布鲁克斯以及他的实验室的研究人员利用这种包容结构设计了多个机器人,其中最早的是“艾伦”(Allen)。不过,艾伦最初的成功却主要是通过计算机模拟而不是通过实际的机器人制造。艾伦共有三个行为层。第一层用于避开障碍物,第二层用于随机游动,第三层用于朝远距离移动。艾伦可以沿着墙走,可以识别门口,但由于它的程序是在LISP机器上运行的,所以,艾伦并没有成为完全自主的机器人。

利用布鲁克斯的包容结构制造的第二个机器人叫做“赫伯特”(Herbert)(根据人工智能的先驱Herbert Simon的名字命名)。赫伯特的包容结构由24个松散连接的8比特处理器运行。赫伯特装配有30个帮助它躲避障碍物的红外线感应器。它依靠一个以激光为基础的视觉系统辨别物体。它还有一只用于抓东西的机械手。赫伯特可以根据它从感应器获得的信息在实验室中走动,可以沿着墙走,可以躲避障碍物,也可以从地上捡起苏打罐。