结果是,这些算法不得不根据每个新问题逐一定制。但正如罗素所说,你不能每遇到一个新问题就请一个博士学生来改进算法,“那并不是你大脑的工作方式,你的大脑会赶紧适应(新问题)。”
这一点让罗素、田纳邦和其他人缓下来仔细考虑AI的前途。“我希望人们会感到兴奋,但不是那种我们向他们推销蛇油(万灵药)的感觉,”罗素说。田纳邦也有同感,尽管已是一个年过40的科学家,他觉得只有一半的机会在他有生之年见证有效推理这一难题的解决。尽管计算机将运行得更快,算法会改进得更精妙,他觉得“这些是比登月或者登火星更艰深的问题”。
无论如何,AI团体的意志并没有因此消沉。例如,斯坦福大学的达菲·柯勒正在用概率编程解决非常特殊的问题并且颇见成效。他与同在斯坦福的新生儿学专家安娜·潘和其他同事一起开发了名为PhysiScore的系统,可以预测一个早产儿是否有任何健康问题。这是个众所周知的难题,医生不能作出任何确定程度的预测,“这种预测却是对那个家庭唯一要紧事,”潘回应。
PhysiScore系统把多方面的因素考虑进去,诸如孕龄、出生体重,以及出生后数小时内的实时数据,包括心率、呼吸率和氧饱和度(Science Translation Medicine, DOI: 10.1126/scitranslmed.3001304)。“我们能够在头3个小时内得出哪些婴儿将来会健康,哪些可能患上严重的并发症,甚至是两周后会出现的并发症,”柯勒解释道。
“新生儿专家对PhysiScore这个系统感到兴奋,”潘说。作为一名医生,对于AI系统具有处理上百个变量并作出决定的能力,潘尤其满意。这种能力甚至让该系统超越了他们的人类同行。潘说:“这些工具能理解和运用一些我们医生和护士看不到的信号。”
这正是多明戈斯一直对自动化医学诊断抱有信心的原因。其中一个著名例子是“快速医学参考,决策理论(QMR-DT)”,它是一个拥有600种重要疾病和4000种相关症状模型的贝叶斯网络,其目标是根据一些症状推断可能疾病的几率。研究者已经针对特殊疾病的推理算法对QMR-DT进行微调,并且教会该系统使用病人的档案。“人们对这些系统和真人医生做过比较,这些系统似乎更胜一筹,”多明戈斯说,“人类对自己的判断,包括诊断,不能保持一致的观点(态度),而医生们不愿意放弃他们工作中这一有意思的部分是唯一让这些系统不能广泛应用的原因。”
AI领域里的这些技术还有其他成就,其中一个瞩目的例子是语音识别,它已经由过去因经常出错备受嘲笑提升到今天令人惊讶的准确度(New Scientist, 27 April 2006, p26)。现在,医生可以口述病人档案,语音系统软件会把口述档案转换成电子文档,由此可以减少手写处方。另外,语言翻译也开始仿效语音识别系统的成功之处。
会学习的机器
但是仍然有重大的挑战显现在各个领域中。其中之一就是弄明白机器人的照相机看到什么,解决这个问题将为设计出自我导航的机器人缩短一大段距离。
开发灵活和快速的推理算法的同时,研究者必须提高AI系统的学习能力,无论是根据现存数据还是现实世界检测到的新数据。今天,大部分的机器学习是由定制算法和小心地构建的数据组完成的,为教会一个系统处理特定的任务而专门设计。“我们希望那些系统更加通用,这样你可以把它们投入到现实世界,同时它们也能从各种输入信息中学习。”柯勒说。
一如既往,AI的终极目标是建造出能用我们完全理解的方式复制人类智慧的机器。“那可能是和寻找外星生命一样遥远甚至同样危险的事,”田纳邦说。“‘拟人AI’是一个更广义的词,有谦虚的余地。如果我们能构造一个视觉系统,像人类能做到的一样,看一眼就可告诉我们那里有什么,我们将无比高兴。”
登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!