我认为300。
乔姆斯基: ...但是,你无法预测什么事情C. 线虫线虫]要做的事情。也许是因为你在错误的地方寻找。
外来的卡茨
我想转移话题,以不同的方法中所使用AI。因此,“良好的老式AI”,因为它的标记现在,强烈的形式主义的传统弗雷格和罗素的数理逻辑,例如,或它的衍生物,如非单调推理等。有趣的是,从科学的角度来看,即使最近,这些方法已几乎全军覆没的主流,并已在很大程度上取代的历史-在调用自身的AI -概率模型和统计模型。我的问题是,你认为说明了这种转变,是朝着正确的方向迈出的一步吗?
乔姆斯基:我听到帕特温斯顿一说起这几年前。他是人工智能和机器人技术得到了这一点,你其实可以做的事情是有用的,所以它的实际应用和一些,也许没有放弃,而是放在一边,更基本的科学问题,只是赶上了在技术和实现特定目标的成功。
因此,它转移到工程...
这样做了所有的地方。如果要预测明天的天气。好吧,我会得到我的统计先验做到这一点的方法之一是,如果你愿意,明天的天气将是相同的,因为这是昨天在克利夫兰,所以我会坚持,在有一个高概率,和那里的阳光将有一定的影响,所以我会坚持,你会得到一堆这样 的假设,你运行实验,你看它一遍又一遍,纠正贝叶斯方法,你会得到更好的先验。你明天的天气将是一个很好的近似。这不是气象学家做什么-他们想了解它是如何工作的。这些都是成功意味着什么,什么样的成就是两个不同的概念。在我自己的领域,语言领域,这一切都结束的地方。像计算认知科学,语言,成功的概念,是几乎总是这样。所以,如果你得到了越来越多的数据,更好的和更好的统计数字,你可以得到一个更好的和更好的近似一些巨大的语料文本一样,一切都在华尔街日报的档案-但你学不到任何东西的语言。乔姆斯基:成为... 好,这是可以理解的,但当然,直接的人从原来的问题。我不得不说,我自己,我是持怀疑态度的原创作品。我想这是第一次,所有的方式过于乐观,这是假设,几乎没有人理解的系统,需要真正的理解,你可以实现的事情,你就不能获得,理解它抛出一个复杂的机器。如果您尝试这样做,你的成功,这是自我强化的一个概念,因为你获得成功这一概念,但什么做的科学,它是非常不同的。因此,举例来说,一个极端的例子,假设有人说,他希望消除物理系,并以正确的方式做到这一点。该“右”的方法是,以采取无休止的数字什么的发生外部视频的录像带,并养活他们到了最大,速度最快的计算机,千兆字节的数据,并做复杂的统计分析-你知道,贝叶斯这样那样的[ 编辑器的注意事项一个现代化的数据大量运用概率论的方法来分析。] -你会得到一些窗外下会发生什么样的预测。事实上,你得到一个更好的预测比物理系永远不会放弃。好了,如果成功的定义得到一个公平的近似一团混乱的未经分析的数据,那么它的更好的方式,以做它这样比到做它的物理学家做的方式,你知道,没有想到实验有关摩擦的飞机,并因此对等等。但是,你不会得到的,始终瞄准科学-你会得到什么样的理解所发生的事情是一个近似值。
一个非常不同的方法,这我认为是正确的做法,以尝试看到,如果你能理解什么的基本原则是,交易的核心属性,并承认,在实际的使用中,还有的会是一千元其他变量干预 - 有点像窗外发生了什么,你会粘着性排序上以后,如果你想更好的近似,这是一个不同的方法。这些科学是两个不同的概念。第二个是伽利略以来,这是现代科学的科学。近似未经分析的数据类型是排序的一种新的方法,而不是完全,有喜欢的东西了过去。它基本上是一个新的方法,加速了存在大量的记忆,非常迅速的处理,使您可以做这样的事情,你不能这样做的手。但我认为,我自己的,它是领先的计算认知科学等学科的方向,也许一些实用性...
..在工程?
乔姆斯基: ...但离理解。是啊,也许一些有效的工程。它是一种有趣的,看看发生了什么事工程。所以当我到麻省理工学院,它是20世纪50年代,这是一个工科学校。有一个很好的数学系,物理系,但他们提供服务的部门。他们教的工程师,他们可以使用的技巧。电气工程部门,您学习了如何建立一个电路。好吧,如果你去了麻省理工学院在20世纪60年代,还是现在,它是完全不同的。无论你在什么工程领域,你学会了基本相同的科学和数学。那么也许你了解一点点关于如何应用它。但是,这是一个非常不同的方法。它可能导致的事实,真正在历史上是第一次,在基础科学,物理学一样,有一些东西真的告诉工程师。此外,技术开始改变速度非常快,所以没有太大的学习今天的技术,如果它的将是不同的10年,从现在的点。所以,你要学会科学的根本,将是适用于任何沿。而几乎同样的事情发生在医学上。因此,在过去的一个世纪中,又是第一次,生物学有什么大不了的事情告诉给医学实践的,所以你必须了解,如果你想成为一名医生的生物学和技术,将再次改变。嗯,我认为这是一种过渡,像一门艺术,您将学习如何练习-一个模拟将设法满足一些数据,你不明白,也许,在一些时尚的东西,将工作建设- -科学在现代时期,发生了什么事,大约伽利略的科学。