诺姆.乔姆斯基:人工智能在哪里出了错?

   乔姆斯基:当然,我认为这是非常类似的。你可以说的是同一件事的免疫系统的研究。

   它甚至可能是简单的,其实,做到这一点的认知这些系统。

   乔姆斯基:虽然你所期望的不同的答案。你可以这样做的消化系统。假设某人的研究消化系统。那么,他们就不会学习会发生什么,当你有一肚子的流感,或当你刚吃一个大苹果,或一些。让我们回到窗外拍照。研究消化系统的方法之一是采取在任何情况下,你可以找到有关消化系统做什么,折腾到计算机中的数据,进行统计分析的所有数据-你得到的东西。但它不会是任何生物学家会做什么。他们希望到抽象的路程,在开始的时候,从什么被推定-也许是错,你永远是错的-不相关的变量,如你有胃流感。

   但是,这正是生物学家在做什么,他们正在生病的人与病人的消化系统,比较它们的法线,并测量这些分子的性质。

   乔姆斯基:他们这样做是在一个高级阶段。他们已经明白了不少消化系统的研究之前,我们对它们进行比较,否则,你会不知道该怎么比较,为什么一个又一个不。

   好了,他们依靠统计分析,挑选出的功能歧视。这是一个高度可资助的方法,因为你自称研究生病的人。

   乔姆斯基:这可能是资金的事情的方式。比如基金研究语言的方式是说,也许有助于治疗自闭症。这是一个不同的问题(笑)。但开始你,振振有词,采取的是不相关的入侵,看看你能不能找到它的基本性质-然后会问,那么,会发生什么,当我把一些这方面的研究系统抽象的逻辑搜索其他的东西,如胃流感。

   它似乎仍然像有Marr的水平,这些类型的系统应用中的一个难点。如果你问,什么是,大脑是解决计算问题,我们有一种答案,它有点像一台电脑。但是,如果你问,什么是计算问题的解决是非常困难的,甚至认为肺, - 这不是明显的信息处理这类问题。


   乔姆斯基:没有,但我们没有理由认为所有的生物计算。有可能会被认为是认知的原因。而事实上,Gallistel不说,一切都在身体应该加以研究,发现读/写/地址单元。

   这似乎只是任何进化的直觉相反。这些系统的共同进化,重复使用许多相同的部件,相同的分子,途径。细胞被计算的东西。

   乔姆斯基:你不学习,肺经询问哪些单元格计算。研究免疫系统和视觉系统,但你不会期望找到相同的答案。一个有机体,是一个高度模块化的系统,有很多复杂的子系统,这是更多或更少内部集成。他们通过不同的原则。生物学是高度模块化。你不要以为这一切都只是一个大的烂摊子,都扮演同样的方式。

   不,肯定的,但我是说你会采用同样的方法来研究每个模块。

   乔姆斯基:不一定,如果模块是不同的。一些模块可能是计算,其他的可能不大。

   所以,你会觉得这是充分的理论是解释,而不是只是预测数据,统计的方法,这将是一个充分的理论系统,计算系统 - 我们甚至可以理解他们吗?

   乔姆斯基:当然。您可以了解了很多有关的说法,是什么让一个胚胎变成一只鸡而不是鼠标,让我们说。这是一个非常复杂的系统,涉及到各种化学相互作用,各种其他的事情。即使是线虫,这是没有办法的明显-事实上,有研究报告-这一切都只是问题的一个神经网络。你必须看看在大脑中发生了复杂的化学反应,在神经系统中。你有自己的每个系统的研究。这些化学相互作用,可能不是你的算术能力的作品-可能是不相关的。但他们很可能是关系到是否决定提高你的手臂或降低。

   不过,如果你研究的化学作用,它可能会导致你进入你打电话只是重述的现象。

   乔姆斯基:或解释。因为也许这是直接,最重要的是,参与。

   但是,如果你能解释一下它的化学X已被打开,或基因X已被打开,你还没有真正解释如何确定是生物体。你只是找到了一个开关,打的开关。

   乔姆斯基:但你看进一步,并找出是什么使这个基因在这种情况下,做这样或那样的,做别的事,在不同的情况下。

   但是,如果基因是错误的抽象层次上,你会搞砸了。

   乔姆斯基:那你不会得到正确的答案。也许他们不是。例如,这是非常困难的,占一个有机体如何从一个基因组中产生。有各种生产在细胞上。如果你只是看在基因作用方式,您可能无法在正确的抽象级别。你永远不知道,这就是你的研究。我不认为有任何的算法,对这些问题的回答,您不妨一试。