人工智能:拿什么向奇点迫近

1957年,人工智能(artificial intelligence,AI)的先驱、通用问题求解机(Gobal problem solver)的发明者之一赫伯特·西蒙(Herbert A.Simon)曾说过:“我不是故意让你震惊,但概括来说,现在世界上就已经有了可以思考,可以学习和创造的机器,而且它们的能力还将与日俱增,一直到人类大脑所能够应用到的所有领域。”

西蒙当时曾预言,计算机会在十年之内成为国际象棋冠军。然而现实比西蒙的预测落后了三十年——直到1997年,IBM的电脑“深蓝(Deep Blue)”才战胜了象棋冠军加里·卡斯帕罗夫(Garry Kasparov)。

卷土重来

在人工智能发展早期,学术界和工业界对其前景持有一种过分乐观的态度——这种乐观与其说是对技术的期望过高,倒不如说是当时人们对机器能力的估计实在是过低,以致于当计算机表现出一点点聪明,人们就为之惊叹,而这种惊叹又很容易演化成一种过分的自信。

这样的自信自然无法长久。度过了最初的兴奋后,无论是工业界还是学术界都遭遇了巨大的困难。以机器翻译为例,早期人们以为机器翻译只需要进行字典的对应转换,再加上人为制定的语法规则就能实现;而实际应用时却发现,这样的系统无法应对哪怕稍有复杂的多重语义,也无法针对上下文语境做出恰当的反应,很多理论上能够实现的算法也无法在有限的计算资源上展开。

1973年,英国政府委托数学家詹姆斯·莱特希尔爵士(Sir James Lighthil),对人工智能进行全面评估。结果显示,人工智能无法应对现实世界中存在的“组合爆炸”问题,因此只能实现一些简单的应用。以这份报告为基础,英国政府停止了对AI领域的研究支持。在这之后,人工智能研究陷入了长久的沉寂。

在近半个世纪之后,人工智能领域才又再一次回到人们视线,而这一次,我们拥有的资源与之前可谓不可同日而语——计算资源已经部署在云端,像水和电一样唾手可得;互联网所容纳的信息超过了前人所有的知识储备,现实和虚拟世界也不再泾渭分明。以深度学习为代表的算法发展,也使得机器有能力处理如此庞大的数据。

如果说这些只是理论,那么IBM的超级计算机“沃森(Watson)”在电视节目《危险边缘》(Jeopardy)中战胜人类,获得年度总冠军;Google X的虚拟大脑在没有预先输入的情况下,独立地从Youtube上的1000 万帧图片中学习到了“猫”的概念,就早已不是理论上的可能性,而是真实发生的现实。

第四次工业革命的前夜

尼尔·杰卡布斯坦(Neil Jacobstein)在一次演讲中曾说过这么一句话:“当你站在太空中回望地球,你看不到争吵不停的200多个国家;而当你深入自然奥秘之中,你也看不到界限分明的学科划分。”这句话在一定程度上,可以代表杰卡布斯坦所在的奇点大学(Singularity University)的宗旨。与其说这所大学在教授最前沿的技术,倒不如它在传播最先进的理念。奇点大学专注的不是技术,而是现实世界的改变,这种改变无疑需要一种融合的视角才可能打破我们心智的成见,去实现真正的进步。

这一点对于杰卡布斯坦来说,并不是问题。作为奇点大学的人工智能与机器人项目负责人,他曾在斯坦福研究增强决策系统(augmented decision system),并担任过创新应用人工智能会议主席,同时有着环境科学与分子生物学背景。杰卡布斯坦对于整合也是游刃有余。

在杰卡布斯坦眼中,人工智能的发展同世界的改变一样,需要融合。杰卡布斯坦将AI划分为三个大的领域:机器学习,规则化的知识库,以及对于人类大脑的逆向工程。这三个方面也恰好对应着人工智能的三种主要做法。

机器学习

机器学习主要的目的是使机器拥有学习的能力。举例来说,当我们登录电子邮箱时,遇到一封广告邮件。我们手动将这封邮件标记为广告,并将其归为垃圾邮件。这个动作其实就是在对机器进行指导,在机器学习中,这一过程称之为标注,而机器可以从所有被标注为垃圾的邮件中,发现其共有的模式,并使用这种模式来对未知的邮件进行预测。此外,机器也可以在没有预先输入的情况下,自己进行学习,例如上文提到的Google X虚拟大脑。