(三)一种新的刻画法律论证渐进可接受性的语义
波洛克的批判链语义可以计算命题的证成度,进而反映法律语境下命题的可接受性。但是该语义用于刻画法律论证还存在若干问题:(1)批判链语义是在由命题组成的推论图中定义、计算命题的证成度,但是法律实践不仅关注命题的证成度,还需要直观地判定(以命题作为结论的)论证的可接受性程度。要直观地得到论证的可接受性程度,需要的是由论证组成的论证图。(2)批判链语义容易导致一些反直观的结果(36),例如,减弱攻击的数学性质及其定义会使强度相等的两个互相攻击的命题的证成度为0,但是在实践中,两个同等强度的命题即使在互相攻击的情况下仍然可以支持或攻击其它命题;又如,该语义处理削弱攻击和反驳攻击所采用的方法相同,然而攻击可废止推论关系的削弱攻击与攻击结论的反驳攻击是两种性质不同的攻击类型,需要对两者加以区分。(3)波洛克的系统中不包含攻击前提的攻击类型(ASPIC+称之为破坏攻击),因而他的批判链语义不能计算遭到破坏攻击的命题的证成度,该语义应当加入关于破坏攻击的算法。
为避免以上问题,笔者给出了一种新的基于论证图的渐进论证语义(37),这种语义可以通过计算论证的证成度来反映法律语境下论证的可接受程度。该语义的核心内容包括:(1)定义了一种新的论证图G(Argument Graph),论证图由论证、真子论证链以及论证间的攻击链三部分构成。在论证图的图示中,圆点形箭头表示论证间的真子论证关系,普通箭头表示论证间的攻击关系。(2)在论证图中定义了一类由论证点A通达论证点B的路径P(A,B),并且定义了一类由论证点A通达其本身的循环路径P(A,A)。(3)给出了一种更新论证图的方法,这种方法通过剔除循环路径中的被称为点依赖(Node-Dependent)的攻击关系从而得到更新的论证图。(4)与前述的带渐进强度的ASPIC+框架相结合,利用该框架中的算法计算得到论证的强度并作为语义中算法的初始赋值,同时采纳该框架中诸如论证构造、攻击类型以及击败关系等概念。(5)给出了一种计算论证证成度的算法,这种算法可以处理任何带圈的复杂论证图中任意论证的证成度,该算法还包含了计算被破坏攻击的论证的证成度,并且对被反驳攻击的论证与被削弱攻击的论证加以区别处理。仍以“案例片段1”为例,得到的论证图G表示为(图4)。
法律论证适用的语义模型有助于起、应、审三三方在庭审阶段厘清思路,分辨出论证的证成状态或证成强度。以刑事审判为例,从审方的角度看,无论是大陆法系还是英美法系,都需要准确地判定起方支持其主张的论证是不是完全证成的或具有高证成度的,以衡量论证是否达到无合理怀疑或自由心证的证明标准。从起方的角度看,在英美法系中,起方首先需要给出支持其主张的可防御或弱证成度的论证以履行举证责任,从而达到微弱证据标准,为进一步履行说服责任,还需要构造支持其主张的完全证成或具有高证成度的论证以回应其反论证,以达到无合理怀疑的证明标准。从应方的角度看,应方需要识别出起方给出的论证是不是完全证成的或具有高证成度的论证,具体方法可以找出对应的反论证或者指出起方给出论证中存在包含于偶循环或者奇循环的子论证。
四、讨论与结语
上面对法律论证适用的人工智能模型(框架模型和语义模型)做了介绍和分析。需要指出,对于法律论证模型,人们不仅关注它的构建和它对法律属性的刻画能力,而且关注基于论证模型生成的可视化软件及其在司法实践中的应用前景。这就推动了对法律论证应用系统的研究,并且产生了若干成果。应用系统是在法律论证模型。(38)的基础上,结合不同的司法实践目的,利用人工智能技术和计算机编程技术生成的软件系统。已有的研究成果随着应用的推广也逐步在司法实践领域发挥作用。总体而言,对法律论证应用系统的研究,大陆法系更注重基于规则的推理(RBR)的论证系统,英美法系更注重基于先例的推理(CBR)的论证系统。当前应用系统研究所涵盖的内容已经不局限在法律论证与法律推理的可计算建模,还扩展到法律知识获取和表达、法律规范概念和司法行为的表达、规范系统以及多主体系统的表达等方面。按照应用目标的不同,法律论证的应用系统可以分为基于法律规则的系统、基于先例的系统、基于对话和论辩的系统以及图解论证系统(39)。