这个工具包支持人工智能各个方面的应用,包括口语,视频和其他媒体。但是,最震撼和最强大的功能莫过于牛津项目现在支持开发者通过牛津人脸应用平台接口项目( Project Oxford Face API)检测图片中的人物表情。
譬如,用牛津项目处理一张包含5个人的照片,识别照片中的脸以及每个人的表情——快乐,愤怒或恶心。
这项功能在新的高度,像人类一样「理解」图片质量。观看他人照片时,人们关注的最重要特征就是个人或群体的情感状况。
Pinterest Visual Search
Pinterest日前发布了全新的图片搜索功能,它能帮助用户发现更多的信息甚至帮助购买他们在固定照片里看到的产品。
首先,在 Pinterest的图片中选中任一物体(来回拖动一个盒状标识)。然后,搜索工具会找到具有相似图案和颜色的相似物,系统会将最匹配的结果链接到购买按钮上,点击这里就能购买该产品。
这个功能是以伯克利视觉和学习中心(Berkeley Vision and Learning Center)的深度学习人工智能为基础的。
这种照片人工智能应用可以说是万维网照片的雏形,在这个万维网中,每张图片中的每个物体都与等同物或者相似物、相关物彼此关联。
CloudSight
一家名为CamFind的图片识别和视觉搜索公司,今年推出了一个「云视觉」(CloudSight)的公共应用平台接口。
这个API支持开发者使用CamFind的人工智能分析图片内容。这样的扫描大多数情况下具有高度特定性,比如,能识别汽车的制造和模型,或者狗的品种以及食品的具体类型。一旦分析出图片中的物品,开发者就可以使用这些信息来获取网络上的文字信息。
Deepomatic
Deepomatic开发了一种服务型软件智能搜索引擎,它能识别图片中各种各样的数据。Deepomatic热衷时尚。它不仅匹配颜色,图案和其他数据,还能识别图片中的物品,并将它与一个全面的时尚产品数据库进行匹配。
Deepomatic网站声称,其技术模拟了人类大脑接收视觉信息的方式并用这种方式来理解各种概念。
远大前景
每当想到这样一个令人惊喜的新世界:能够理解照片内容的人工智能将无处不在,具有强大扩展潜力且唾手可得时,这些无限可能性就会令人叹为观止。
而且,这仅仅是一个开始。在绝大多数情况下,这项技术几乎都能通过API,开源程序或服务化处理得以应用实现,因此,我们已经站在了未来世界的入口:图像AI将和网络搜索一样普及,成为这个世界的一个基本特征。为了真正模拟人工智能,计算机必须有视觉,现在它们有了。
机器之心编译出品,参与成员:Sane、微胖
登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!