石洞壁画的灵感可能由此而来。绘画或者雕刻石头经常会利用自然特性——例如墙上的鹅卵石看起来像眼睛。克鲁马努(旧石器时代晚期生活在欧洲的高加索人种)艺术家最开始可能利用随意性特征来识别狮子或野牛,然后通过绘画或者雕刻让动物的肖像变得清晰起来。所有的具像图片(不只包括图画,还有照片)都依靠这种能力将一件东西(平面上的图状)看成另一种东西:3D世界中的东西。
谷歌Inceptionism
谷歌开发的AI系统擅长于做这样的事。图片是由人工神经网络创作的,也就是用软件模拟大脑神经元处理信息的方式。软件先要接受训练,通过分析数百万个实例进行训练,然后才能识别图片中的物体:一个哑铃、一条狗或者一条龙。谷歌研究者发现,按照达芬奇的建议,他们可以将系统变成“艺术家”。先向神经网络输入一张图片,上面满是斑点,然后命令网络进行调整,软件之前已经识别了一些物体(训练出来的),它要从班点中寻找任何与物体相似的地方。此时软件做的事和安东尼从云彩中看到动物是一样的。谷歌团队将最终的艺术风格叫作“Inceptionism”,因为神经网络架构的研究项目代号为“Inception”。2010年时曾经有一部电影也叫《Inception(盗梦空间)》,它讲述了一个男人深入他人大脑梦境的故事。
站在艺术的角度来看,你可能会将Inceptionism当成超现实主义的一个变种。雷尼· 马格利特(René Magritte)、萨尔瓦多·达利(Salvador Dalí)和马克斯·恩斯特(Max Ernst)创作了许多超现实主义作品。
Inceptionism到底怎么样呢?一些画作很惊人,可以从不同的角度来欣赏,比如线条的风格模仿梵高。至于Inceptionist作品还是太普通、太像照片了,太像达利或者马克斯·恩斯特的作品。不论是Painting Fool还是其它相似的程序,水平连高中生都不如,连业余艺术俱乐部的标准都没达到。计算机艺术的潜力在哪里?人工智能可以为视觉艺术增添风采吗?
Simon Colton已经意识到批评的存在,人们认为Painting Fool的作品只属于它自己。Simon Colton说,如果人类画家画了一幅画,我们不会将赞美对准画家的老师。那么赞美应该给谁呢?这要视具体情况而定。
回到过去
文艺复兴时期,工作室的画如果赢得赞扬,荣誉归老师所有,学生没有份,尽管他们完成了相当一部分的作品。但是在Verrocchio创作的《Baptism of Christ》(约1475年)中,我们看到了工作室成员达芬奇的造诣,因为他画的那一部分(天使和一些风景)与老师的完全不同。艺术历史学家将这幅画视为联合创作的结果。
在17世纪的Antwerp(安特卫普),鲁本斯有一个小工厂,里面招纳了一些接受过高标准训练的助手,鲁本斯绘制大尺寸作品时,这些助手或多或少参与了大多数作品的绘制。一般程序是这样的:老师先绘制小幅草稿,然后在老师的监督下,画作慢慢填充到天花板或者祭坛上。一些学者认为,有时工作室的作品虽然标的是“鲁本斯”的大名,但实际上连画的原始模型都有可能不是他提供的。
历史为AARON提供了有趣的例证。在过去的四十年里,不断进化的程序绘制了许多画作,它们到底是Harold Cohen的作品还是AARON自己创作的?或者是联合创作的?这可是一个微妙的问题。AARON从没有跳出20世纪60年代Harold Cohen的基本创作风格,他当年曾是色彩领域抽象概念的代表人物。从这个角度来看AARON是他的学生。
Cohen之所以会对AI感兴趣,因为他觉得“艺术创作不一定需要持续作出决定……我们应该可以设计出一套规则,不需要深思就可以按规则绘画。”
办法就是总结某一类艺术家的特征。上世纪20年代至30年代,皮特·蒙德里安(Piet Mondrian)创作的抽象画就是一个好例子。这些作品是根据一套规则创作的:只允许使用直线,只能以直角相连,只能用红蓝黄描绘(加上黑和白)。