AI赢了围棋 但它能颠覆金融和医疗吗?

第二个是它的自我学习,它把高手的棋路学了以后怎么再上一层楼呢?就是两个AlphaGo , A 和 B 下, A 赢了照 A 的路子走, B 赢了照 B 的路子走,进行很多的排列组合。第三个是强大的运算能力。先跟高手学,再跟自己学,再用非常大的机器运算量不断地学,而且它有 200 个 CPU ,一天 24 小时学习,所以我们人类再聪明也不如它勤奋。

我觉得AlphaGo 肯定是巨大的成功,因为它是里程碑的事件,包括我个人在内都认为围棋至少需要五年的时间才能跟人类的高手交锋,因为我们推算一下国际象棋是 20 年前做的 10 的 50 多次方,围棋是 10 的 170 多次方,计算的次数大概需要 30 年。结果超越了我们的想象,所以它让很多人乐观地说 AlphaGo 里面的技术跟着人学习也好,自我学习也好,是不是可以用到别的领域。我觉得这是它达到的非常巨大的效应,让我们更多人觉得原来这个速度比我们想象得还要快,所以我们是不是可以用它来做很多其他的领域,比如说帮着律师看,帮着医生做判断,判断股票的走势,这些都会比我们想象得走得更快,这是很大的成就。

另外澄清一下,这些技术是十年前就有的,到底伟大在什么地方呢?这次我去谷歌也和谷歌的CEO 和专家交流了一些,简单地讲,我觉得今天人工智能,如果你具有三个条件就可以深度地进入很多人类过去感觉不太能解决的问题,而且提供巨大的商业价值,这三个是什么呢?第一个是要有巨大的数据量,最好还是能自我迭代的,他们有数据就可以学习,我们在座的还没有。第二个要有非常巨大的计算量,谷歌的一大秘密是他的技术比全世界任何一个公司都多,他的巨大的计算量又是巨大的优势。第三个技术讲得这么伟大,实际上要平台化,网上公开的还是与谷歌相差的相当远。谷歌投入了 15 个世界顶尖的深度学习的专家,把 15 个人投进去两年。这些基本上可以在任何可理解的领域里达到他的贡献。

所以我们从投资人和创新创业的角度看,我觉得一方面对AI 的发展我对未来十年特别乐观,会改变每一个产业,而且 50% 的工作都会被 AI 取代掉。但是前两年的观点我还是认为还是只能在比较小的领域,因为平台的形成是要时间的,不像过去安卓、 hadoop 是有很多基础的,这还是需要时间。我认为这个技术两年比较保守,但是十年特别巨大有颠覆性的基矗

最后讲一下谷歌做的事情,谷歌经过做搜索、广告提炼出了一个大脑,这个大脑用在基因检测、医学就会形成新的公司,所以就是用这个大脑做比喻,也有做投资、无人驾驶、语音识别都可以用上。所以国内的科技发展还是需要看哪些公司能够有数据、计算量和深度学习的科学家进打造更多的大脑工程,无论是大公司来做,还是创业公司来做,这都是有必要的。

主持人(丁健):包括华尔街用大数据和一些过去老的分析方法已经很久了,所以金融领域应该是人工智能非常重要的一个应用。所以我想请小加讲一讲在这方面有什么样的技术,另外这方面新的人工智能可能对这个领域产生什么样的影响?刚才听了两位专家讲以后。

李小加:我希望讲两个,一个是物理上的互联网怎么改变金融,另外一个是化学上的。从智慧型的深度学习来讲改变金融,无论是物理的还是化学的,互联网改变金融,我希望这个观点大家把它打破,金融应该是互联网最后一个才有可能颠覆的行业,这个行业的特殊性使得它极其不容易被互联网技术完全颠覆。你刚才讲的深度学习,我们先不讲国内,首先讲到的概念,在金融里面叫程序化交易,有的人叫高频交易,高频交易是通过计算机的深度学习来判断市场,把市场里面的所有信息集中在一起然后进行交易。这个交易主要体现在高频上,就是在速度上。咱们先说美国,最近中国已经遇到了巨大的挑战,没有在中国开始就已经基本上暂时结束了。到底高频交易是什么?高频交易本身就是速度,速度为什么在国外这么重要呢?在美国有50 几个交易所,在我们这里只有 2 个交易所。当有 50 几个交易所,有大量不同信息的时候,只要价格有微小区别的时候,就能够通过高频交易找平了,这提供了巨大的流量,但找平不存在价值,所以在美国也具有争议的高频交易。今天拿到中国来几乎变了去年股灾的重要元凶之一,这个大家一定要有充分的认识。高频交易本身就像汽车一样,它就是一种交易手段,非常快。高频交易从两百年前就开始了,从拿坡仑打了败仗以后,很多快马就像伦敦奔跑,把拿坡仑失败的消息告诉金融市常这时候是用信鸽的形式,把信息绑到鸽子的腿上,结果鸽子新到了伦敦。当你有电话的时候肯定比跑得更快,当有电脑的时候肯定比电话快,当有电脑的时候肯定有比电脑更快的东西。真正的高频交易的问题不是速度本身,不是技术本身,不是学习本身,而是作为一个工具干什么。因为什么工具都可以干坏事,咱们中国的资本市场之所以把高频交易放在非常负面的情况就是去年的股灾造成的。但是大家一定要知道高频交易什么情况下根本上是不好的,什么时候是没问题的。比如一个农民拉着一车西瓜到市场上卖,如果他去的过程中有可能在路上西瓜的价格发生了重大的变化,到了那是什么就是什么。而交易本身是干什么的呢?如果一个高频交易的人能够在那边知道是多少价格,然后快马奔到路边跟他说不用进城了,你西瓜卖多少,他说昨天 1 块钱,今天能 1.1 元我就很开心了,这个人知道市场上是 1.5 元。这是好的高频交易。什么是坏的高频交易呢?这个人骑着马挡着这个老乡说别进城了,市场已经到 9 毛钱了,我 1.1 块钱买进来。这就变成了高频交易的邪恶,高频交易违反了基本的诚信。如果高频交易本身就是比你快,你也不在乎,你本来也到不了那个地方,这是没有问题的。可是今天的高频交易在中国的资本市场上,这样的 IT 的深度学习在资本市场的应用还没有开始就已经倒下了。至于倒下以后还能不能再站起来就要看相关的市场智慧和市场本身的变化。因为中国市场 80% 大家都骑着自行车,那这个市场要想发展,必须要大家都开车。可是你不可能在大家都开车的情况下,有可能市场混乱撞死人,现在汽车不允许做,那就大家都是自行车市场慢慢往前走吧。