人工智能对于教育行业来说意味着什么?

编者按:Graham Brown-Martin 是《重新想象学习》的作者,他曾经提出我们建学校是为了什么这个问题,并且一直在整个工业化的背景下思考科技如何改变教育。最近随着 AI 的崛起,他又提出了一个应景的问题:AI 对教育意味着什么?当 AI 在某些我们正在学校里培养的能力方面远远过人类时 AI 我们会怎么做?我们又应该怎么做呢?

IBM Waston AI 的广告里面有句话对我触动很深:

有了 Watson,这一代的问题解决者要学得快得多。

我在在教育与创意领域数字化平台工作了大概 30年,我注意到每次技术有了点进展之后都会出现这样的说法。Watson 当然是非常聪明的技术。它还没有通过图灵测试,但是已经击败了 Jeopardy! 人类智力竞赛的冠军。

在 Jeopardy! 获胜证明 Watson 懂人话(自然语言理解 NLU),也即是说你可以用人类语言问它问题,然后他可以迅速从事实库里面找出答案回答你。实现这一点需要可观的计算能力。Watson 可以在 3 秒钟之内回答问题,其主要创新是可以迅速用超过 100 种语言分析技术对问题进行分析,然后寻找和生成备选答案,并对答案进行记分和排名。Watson 的知识库包含了 2 亿页的结构化和非结构化内容,占用了 4TB 的存储。Watson 的硬件包括由 2880 POWER 7 处理器内核及 16TB 内存组成的集群,具备大规模的并行处理能力。

这种技术不是那种可以装进口袋里面的技术,围绕着人工智能的对话也不是什么新东西。有趣的是,广受认可的 AI 先驱(至少是在教育领域)是 MIT 的 Seymour Papert 和 Marvin Minsky,他们早在 1950年 代就研究这些东西了。

AI 最近变得时髦起来的原因在于尽管它属于计算密集型应用,但这种能力已经交给云端去处理了,同时利用了智能手机或可穿戴设备等便携设备做界面。这种办法使得翻译和语音识别系统变得流行起来。

这也是我们当中的一部分人发现自己的语音控制设备或者儿童玩具充当监控设备时变得神经过敏的原因。只要给云端足够的计算能力和数据,一切皆有可能。

另一方面,图灵测试仍然是验证 AI 的金科玉律—图灵在 1950年 那篇对未来具有深远影响的论文《计算机器与智能》中提出了一个问题,“机器自己能思考到什么程度呢?” 他指出,如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。

图灵并不是提出这个问题的第一人。比方说,笛卡尔 1637年 的《谈谈方法》中就提出了类似的问题,并最终得出了著名的哲学论断 “我思故我在”。当然,这个实际上要归结为意识了,而意识跟我们所说的 “弱 AI” 是有着显著不同的,后者在性质上是对智能而不是意识的仿真,属于某种无知觉的智能,比如象棋游戏使用的智能。

在我们深入探讨智能的定义之前,值得注意的是图灵测试是有瑕疵的,因为人类在计算和信息获取等方面相对而言并不是很好的问题解决者。但是我们在儿童教育方面还是花费了很多年的时间漫无目的地训练他们在这方面跟机器竞争。精准地获取事实也是一样,所以最后是 Watson 赢得 Jeopardy!智力竞赛(注:其实更应该叫做记忆力比赛)。

另一方面 “强 AI” 的一种说法声称,实际上正确书写的、运行在机器上的程序就是思想。这个想法的问题在于它假设人类大脑不过就是一台计算机,而我们的思维就是人家。这个理论认为,只要我们拥有足够的计算能力以及合适的软件去模拟大脑,则机器也能获得知觉。当然,这个一直只是科幻小说里面的东西,尽管 Google 首席未来学家 Ray Kurzweil 这样的人认为,到 2029年 我们可以通过上传意识给计算机来实现永生。好吧,这必须是真的,《花花公子》里面都有写了。

要我说,Kurzweil 等人一定是受隐喻影响而误入歧途。资深研究心理学家Robert Epstein 博士的看法是人脑不是计算机。他引用了 AI 专家 George Zarkadakis 的工作,后者总结了人类过去 2000年 用来解释人类智能的 6 个比喻手法,比如圣经说人是由泥捏成然后再灌输 “精神” 进去的,比如笛卡尔断言人是复杂机器,后来到了 1940年 代人又被比作计算机。基本上每一种比喻手法都折射出了当时最先进的思想。Epstein 认为,到了未来的某个时刻,当技术取得进步之后,我们就会像抛弃从公元前 300年 开始延续了 1600年 左右的把人脑比作水力模型的观点一样,抛弃人脑是计算机的比喻手法。