机器中的幽灵:金融市场的人工智能、风险及监管

进行大量出口销售的公司,天然受制于外汇市场的反复无常。据 Black Rock 的 Paul Ebner 说,2014 年,货币流动,尤其是美元走坚对公司盈利有异乎寻常的影响。BlackRock 的 Scientific Active Equity 团队并未因此出现纰漏,部分是由于机器学习。

4)人工智能的洞见

很清楚的是,人工智能以及数据分析取得的进展正在引发用于决策参考的数据类型和数量的不断膨胀。然而,在根据传统参考单位,比如价格、利率或收入位数,做出投资决定之前,人工智能可以将事件(events)和意见(sentiment)当做要素,纳入资产价格预测过程中。比如,吸收非结构化数据有助于推近意见分析。但是,Hafez 说,筛选事实和解释观点意见一样重要。「不仅仅是指传统意义上的情感(sentiment),比如指引,也是指某些事实,这些事实可以从非结构化内容中提取出来,并以一种机器可以理解的格式予以交付。」

如今,机器交易模型通常用来分析收益评估和公司报告。通过分析产品发布、回收,监管批准,收购以及其他市场事件,它们可以及时捕捉到更多的东西。Hafez 也期待机器学习模型能够被输入来自图片、视频素材等方面的洞见。他说,有些公司使用卫星图跟踪大型零售商店停车场的汽车数量,试图理解它们收入和收益的大致方向。这意味着,人工智能可以改变参数,金融机构凭借这些参数做出投资决策。传统考虑因素的重要性在下降,因为金融机构收集了海量非结构化数据——它们只能借助人工智能和机器学习的力量。

分析工具正越来越善于理解语境——机器学习另一个重要的不同之处。Ebner 解释说,他的团队使用的机器学习工具能通过上下文来理解词汇使用的微妙之处。比如,在美国证监会档案中,单词「垃圾(garbage)」 是指废物管理,但是,在投资人博客上,这个单词很可能就是用来批评股票或公司管理用语。我们能打造出根据语言来源语境不同而不断学习、演化的词典。

人们也正在将相似的技术引进到这样的领域,帮助消费者处理投诉和咨询。RBS 最近已经宣布,将引进人工智能程序( Luvo)用于协助消费者投诉。程序拥有人工个性,模仿了人类特征,比如,友善,共情以及理性。据程序员介绍,Luvo 也能从错误中学习,猜测一个人的情绪状态。由此看来,人工智能被塑造成朋友,而不是敌人。

四、从摩尔定律到墨菲定律

哪些方面会出错?Andrew Lo 认为市场将出现更多的瞬间暴跌,或者其他负面变化,行业和监管者目前对这些问题还没有清晰的认识。「这些策略的性质使它们很难被理解。这意味着它们产生的影响也将很难预测,就像没人能预测出2010年5月6日的暴跌——即使到今天我们仍然不太了解到底发生了什么」。他也提到了骑士资本(Knight Capital)的覆灭,2012年这家美国主要的交易商由于软件故障在交易过程中损失了4.4亿美元,直接被推到了破产边缘:「我不认为我们会很快处理好这类问题,因为最终要解决的是人类能力和技术之间的错配和不协调。即摩尔定律遇上墨菲定律。」

技术并不能将对未来事件下注等金融活动的内在风险去除。无论人们或算法怎么做,这种风险仍可能存在。

正如贝克·麦坚时律师事务所(Baker & McKenzie)的合伙人 Arun Srivastava 指出的,「金融机构已经由于交易员违法违规被处罚了数十亿美元。银行可行的应对方案就是用程序化来做尽可能多的决策,因此越来越多的银行去拥抱人工智能和程序化交易。但降低了操作风险的同时,人工智能方面的内在未知风险并没有被消除。」

1)所有一切都在算法里

监管部门虽然对机器学习还不太了解,但也将算法视为可能发生问题的领域进而重点关注。加拿大投资行业监管组织(IIROC)市场监管高级副总裁 Victoria Pinnington 称她目前最大的担忧就是关于算法的产生过程,无论是在机器学习还是在更广义的系统化交易背景下,「如果算法有问题,」她说,「对市场的影响可能就会相当大。」