做为一个神经科学家、电脑科学家和国际象棋神童。 2010 年,它与 Shane Legg、Mustafa Suleyman 两人共同创办了 DeepMind。在 DeepMind 官网首页,他们这么写下公司宗旨:“解构智慧,用它来让世界更好。”AlphaGo,就是 DeepMind 跨入 AI 领域的重要一步,这一步,世界瞩目,但即使 AlphaGo 证明自己能够胜过人脑,大家感到期待、惊讶,隐而未显的却是更多对于未来的恐惧。
对于人工智慧的发展,持反对意见的科技意见领袖不少,包括特斯拉的马斯克、科学家史蒂芬霍金都是知名的反对派,霍金更曾语出惊人一句人工智慧将使人类灭绝。人们害怕的是人工智能会不会有一天懂得思考?会不会铺天盖地控制我们的生活?
但Demis表示,我不觉得 AI 是个威胁,我觉得他很令人惊奇!相较于媒体询问到任何有关 AlphaGo 的技术细节,Demis 总能细细的、不厌其烦的解释。他在讲这一句话的时候,语气特别加重了些。
在 Demis 眼中,AI 并不是用来取代人类,AI 终归是一项工具,意在让人类的生活进步。机器不会有喜、不会有怒,当然也不会感到疲惫,机器可以不间断的进行运算,在数以百万计的数据资料中,找出最有价值的一个。运用在医疗、科学领域,都能带来极大的帮助,但人类的思想、好奇、想像,才是创造出这一切的根本。AlphaGo 在围棋中胜过人类,但不代表它能够知道或是理解自己正在做些什么,要从机器学习进步到机器理解,还有非常长的距离,让机器能像人脑一样理解,也不会是DeepMind 未来要做的。
所以,Demis 如何想像未来 5 年有 AI 的世界? “我觉得其实不会有什么太大的改变,可能你的手机、你的家庭用品更理解你的使用行为了,也或许无人车满街跑了,但如果说是什么天翻地覆的改变,我觉得不会。”
DeepMind创始人Demis Hassabis
没人会拿6.5亿美金建造只会下棋的机器,深度学习和神经网络已经深入谷歌的各种服务。AlphaGo和以往那些会下棋的机器人的区别在于,他不是被设计出来专门下棋的,他是来“学习”下棋的——这是一个有着“深度学习”功能的机器人,他的使命在于模仿人类的思维进行学习。
换句话说,他今天可以学下棋,明天就可以学写歌。其次,传统的会下棋的机器人是根据一步棋子带来的所有的可能性来布局的,导出所有可能的结果,再往前推“当前这一步该怎么走”,但是这在围棋上是不可行的。
围棋每回合的可能性可达250种,一盘棋可以长达150回,总共有3^361 种局面,而我们目前可观测到的宇宙,原子数量才10^80,所以根本不可能逆推计算。所以这就是AlphaGo机器人最厉害的地方,他不是一个机械的编码程序,他有一个“监督预判机制”,每走一步,他会考虑这种走法是不是更有前途,这是一种类似“想象力”的能力。
这种思维模式,几乎和人类的直觉类似,使得他前所未有地更加像人类。一直以来,外界普遍认为利用人工智能超越围棋专业选手至少需要10年。
韩国围棋九段棋手李世石与 Google 人工智能程序 AlphaGo 之间的“人机对弈”展开第四局,在近五个小时的激战之后,李世石最终扳回一局,取得首胜。李世石称 AlphaGo 的程序虽然表现惊人,但也展现出弱点。而外界也期望李世石能在余下两局为人脑挣回一些面子。出战第四局时,李世石进场时神情较前几天轻松。但在对弈开始后,手执白子的李世石不断陷入长时间思考,而且逐渐落入下风。
战至中盘,AlphaGo 的思考时间比李世石足足用少近1小时,一些直播评论甚至认为已经看不到李世石有逆转的希望。眼看李世石即将进入每一手必须在60秒内落子的“读秒”阶段,令形势更加不利,但他却妙招频出,尤其于第78手下了一子妙棋,成功令僵局现出生机,并能逐步串连起占据棋盘各处的白成功令僵局现出生机,并能逐步串连起占据棋盘各处的白子。有职业棋手形容李世石下出“神之一手”,甚至猜测李世石是否已经看穿 AlphaGo 的行棋弱点,故意在布局阶段布下诱敌之阵。