《连线》把人工智能看成下一个风口?现在还为时尚早

1.学习程序无法修改该架构的任何部分。

2.学习程序无法自我修改。

3.学习程序无法 学习 假设空间之外的函数。

正因为如此,像AlphaGo这样的学习程序,在没有人类帮助的情况下,是无法学会国际象棋或跳棋的。此外,如果未经过大量的专门训练,大多数程序员都无法成功地修改机器学习系统。即便是训练有素的数据科学家,也需要大量的时间和资源才能成功建立起一套成功的机器学习系统。

AlphaGo系统的设计和实现需要3000多万个从互联网上挑选的训练样本,以及一个庞大的研究人员和工程师团队的多年努力。其实,仅仅将AlphaGo击败欧洲围棋冠军樊麾的水平提升到击败李世石的水平,也需要几个月的努力工作 。

此外,AlphaGo还用到了一系列被称为 强化学习 的机器学习方法,通过不断地选择动作、并观察结果,以获得最大的赢面。在强化学习过程中,训练数据并不是 预先标记 的输入。相反,该学习程序被提供了一个 奖励函数 ,即为不同的状态分配不同的奖励。强化学习方法通过执行某些动作、并观察奖励来获得训练数据,本文中的机器学习分析同样也适用于强化学习,该方法仍然受限于其目标函数、数据表现和假设空间等。

可能性空间

非常寻常的学习力量带来了显著结果,我们通常将其称之为 进化 。但需要指出的是,我们必须要意识到自然选择的进化过程和计算机程序模拟过程之间的区别。计算机程序模拟过程被称为遗传算法(Genetic algorithms),目前这种方法还不是特别成功。

遗传算法修改了 生命体 的表现形式,而这种表现形式是非常庞大的。例如,人类基因估计包含了10多亿比特的信息,这意味着人类DNA序列的可能数量是2的10亿次方。探索如此规模的空间所需的成本非常高,但这个空间的拓扑结构让它无法找到简单、适合的算法。相比之下,围棋的可能性空间就小很多,利用机器学习方法进行探索就会容易很多。

为了成功定义一个目标函数,将生活中的一项任务变成为一个简单的优化问题,计算机科学家、研究人员和统计学家整整花了十年时间。但是,许多问题在被表现为机器可操作的形式之前,还需要进行更多的分析。例如,如何以机器可以理解的语言写下一句话的含义?正如麻省理工学院教授杰拉尔德 萨斯曼( Gerald Sussman)所说的那样: 如果表达不出来,就学不会。 在这种情况下,选择适当的表现方法都做不到,更谈不上解决问题了。

因此,深度学习(或者从广义上讲是 机器学习 )已被证明是一种强大的AI方法,但当前的机器学习方法还需要大量的人工参与,才能将一些问题被表现为机器可操作的形式。之后,还需要大量的技巧和时间反复定义这些问题,直至这些问题最终被机器解决。最重要的是,该过程还被限定在很窄的范围内,机器的自主权限很低。和人不一样,AI不具备自主性。

因此,机器学习还远不是一个将从魔瓶里被放出的 妖怪 。相反,它只是理解智能、建立与人类水平相当的AI过程中所迈出的坚实一步。

登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!