人工智能会导致大面积失业甚至让人类灭绝吗?

有人看到风险,有人洞见机遇。投资者正在不断涌入这个领域,科技巨头们则在不断收购人工智能创业公司,并争先吸引学术界最优秀的研究人才。根据数据分析公司Quid的研究数据,在2015年,人工智能企业的成本创下85亿美元的记录,几乎为2010年的四倍。投资公司Playfair Capital 的 Nathan Benaich 说,2015年人工智能企业的投资轮数比上一年多16%,而与此同时科技产业整体投资轮数减少了3%。Playfair Capital是一家基金管理机构,该公司在人工智能的投资组合达到 25%。“XX+人工智能”取代了“XX行业的Uber”,成为创业公司默认的商业模式。谷歌,Facebook,IBM,亚马逊和微软都想方设法在云端建立人工智能服务的生态系统。“这项技术将会用在各行各业中,只要这个行业有任意种类的数据,图像,语言等数据类型都可以。”MetaMind的创始人Richard Socher说,“人工智能将遍地开花。”MetaMind是一家人工智能创业公司,最近被云计算巨头Salesforce 收购。

这意味什么?本篇特别报道将会审视这项新科技的崛起,探索它对工作,教育,政策的潜在影响,思考它在道德和监管方面的作用。同时,本文还思考了能从机器问题最初的答案中学到的东西。AI引发的担忧和热情不相上下,同时带来了很多问题,然而值得记住的是,其中的很多问题我们在以前都曾问过,并已经有了答案。

2. 技术:从无法工作到神经网络

人工智能的繁荣基于传统与现代想法的结合。

人工智能如何从刚开始的傲慢与失望,突然成为科技界最热门的领域呢?人工智能(artificial intelligence)这个术语最早被写在1956年的一份研究计划中,该计划声称“如果一个精心挑选的科学家小组花一个夏天一起研究,就能使机器解决各种人类无法解决的问题……”,从而实现重大的进步。那被证明只是疯狂过度地乐观,人工智能虽然偶有突破,但其承诺的远比其所能提供的多得多。最终,大多研究者都避免使用这个术语,而更喜欢用“专家系统”或“神经网络”。现在“人工智能”的名誉恢复和重新兴起要追溯到2012年被称为ImageNet挑战赛的在线竞赛。

ImageNet是一个拥有数百万张图片的在线数据库,所有图片都有人工做的标签。对于任何给定词,例如“气球”或“草莓”,ImageNet里都能找到上百张对应的图片。每年的ImageNet竞赛鼓励该领域的人在计算机识别和自动标记图片上进行比赛,并衡量他们的进展。这些系统首先使用被正确标记的图片集进行训练,然后挑战标记之前没见过的测试图片。在后续的研讨会上,优胜者会分享并讨论他们的技术。2010年获胜的系统可以正确标记72%的图片(人类平均有95%的准确率)。2012年,多伦多大学的Geoff Hinton带领的团队实现了85%的准确率,这要归功于一项叫“深度学习”的新技术。这带来了一种长远快速的改进,在2015年的ImageNet竞赛上,一个深度学习系统以96%的准确率第一次超过了人类。

2012年的成果被认为是一项突破,但Yoshua Bengio说,他们依靠的是“结合以前已经有了的东西。”Yoshua Bengio是蒙特利尔大学的计算机科学家,他与Hinto以及另外几个人被称为深度学习的先驱。大体上,这项技术使用了大量的计算和训练数据,对来自人工智能发展初期的一个旧思路进行改进,这个旧思路也就是人工神经网络(ANN)——这是生物学启发的人工神经元(脑细胞)网络。

在生物大脑中,每个神经元都能被其它神经元触发,将输出的信号馈送给另一个神经元,而且此神经元的输出也能继续触发其它神经元。一个简单的ANN网络有一个输入神经元层,在这里数据被馈送进网络中;还有一个输出层输出结果,中间可能还会有三两个隐藏层对信息进行处理。(实际中,ANN网络全部在软件中模拟。)网络中的每一个神经元都有一系列的「权重」和一个「激活函数」控制着输出的信号发射。训练一个神经网络涉及到对神经元权重的调整,以便一个给定的输入产生期望的输出。ANN在20世纪90年代早些时候就已经实现了一些有用的结果,例如识别手写数字。但在完成更为复杂的任务上,ANN陷入了困境。

在过去的十几年中,新技术的出现和对激活函数的一种简单调整使得训练深度网络变得可行。同时,互联网的兴起产生了数十亿可用于目标训练的文档、图片、视频数据。这所有的一切都需要大量的数字操作能力,而2009年左右当几个人工智能研究团体意识到个人计算机和视频游戏机上用于生成精致画面的GPU也同样适用于运行深度学习算法之后,计算能力也不再是个问题了。斯坦福大学由吴恩达带领的一个人工智能团队发现GPU能够几百倍地加速深度学习系统。然后,训练一个四层的神经网络突然就变得很快了,由之前需要花费几周的时间变成了不到一天时间。GPU生产商NVIDIA的老总黄仁勋说这是一个令人高兴的对称:GPU这一游戏工作者用于为游戏玩家构建幻想世界的芯片也能用于帮助计算机通过深度学习理解真实世界。