中美人工智能技术差距太大 不可急着商业化

横向对比,中国和国际领先公司在核心技术上确实存在差距,但从纵向看,中国在人工智能领域的技术积累近几年确实出现了飞跃,无论是最底层的计算机体系架构,还是智能硬件,或是上层软件应用,都有质的进步。

“人工智能的商业化就是看它是否已经深入到“黄赌毒”这种人类最基本的诉求中”,Google科学家、畅销书作家吴军博士的一句调侃似乎是在给人工智能的商业化指明道路。

不过现实的情况要远比这个复杂且零散:谷歌通过擅长围棋的AlphaGo娱乐化地向人们展示了人工智能的潜力\并将人工智能应用于VR视频制作领域时;相反的是,国内的严打,则让企业把它用在了更为实际的鉴黄上——图像识别也是人工智能的一种。

人工智能(Artificial Intelligence),缩写为AI,是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。该领域的研究包括机器人、自然语言处理(包括语音和语义识别、自动翻译)、计算机视觉(图像识别)、知识表示、专家系统等。

BBC预测,到2020年,全球人工智能市场规模将达1190亿元人民币。未来人工智能技术的发展,还将带动云服务、大数据分析、移动互联网和物联网产业的升级迭代,甚至将超越移动互联网,全面改变人类的生活和工作方式。

放在当下,我们看到,在人工智能的各个领域,国内外巨头都已意识到潜在的未来,某些领域甚至已经展开了激烈的竞争。

因AlphaGo而名声大噪的谷歌人工智能

去年10月份,谷歌CEO皮查伊曾表示,谷歌计划将人工智能研发和所有核心业务联合起来,包括搜索引擎、广告、视频网站YouTube和电子商场Play。 紧接着的11月9日,谷歌宣布开源机器学习平台TensorFlow,让每个人都可以利用计算机和网络去使用这个强大的机器学习平台。谷歌旗下的50多个产品都运用了TensorFlow深度学习系统(机器学习的深度神经网络)。

最重要是的,这一系统将从不局限于谷歌在内的所有产品那里得到训练。在激烈的商业竞争中,更快的训练速度是人工智能企业的核心竞争力,分布式TensorFlow意味着它能够真正大规模进入到人工智能产业中,产生实质的影响。

此外,Google在无人驾驶汽车技术上已经探索了很多年,其中无人驾驶汽车测试里程也早已经超过200万公里;直到今天,Google依然在对这一项目进行测试和改进,并曾于去年宣布自动驾驶汽车将在5年内上市。当年,谷歌隐形眼镜实现实时监测血糖,谷歌人工智能摄像头即时翻译拓展到27种语言……

整体上看,谷歌的人工智能与大规模商业化还有距离,但其底层人工智能技术的积累绝对是走在世界前列的。

微软在人工智能方面的技术研究已经有25年历史

1991年微软成立研究院,最早的五个研究组,研究方向分别是人机交互、自然语言处理和机器学习、语音识别和语音合成、计算机视觉。这些恰恰是今天人工智能的几个最重要的分支。微软的人工智能研究方向很宽泛,研究院甚至拥有超过1000位科学家,在包括深度学习的多个领域的技术布局处于世界顶端。

微软最新的深度学习系统在2015年的ImageNet计算机视觉识别挑战赛中,将计算机视觉系统错误率降低至3.57%,相比于人眼辨识的5.1%,这是人工智能首次在识别图像的错误率上超越人类水平。这些机器由微软的Azure云服务提供支持。

微软不仅将人工智能技术应用于如Windows、Azure等核心业务中,还构建开放的平台,将多年的技术积累开放给产业界,它的目标是打造一个人工智能生态圈。不过,在现实的商业世界中,微软隐蔽得最深。

人工智能视为未来的三大方向之一的Facebook

Facebook的优势在于拥有全球范围内的海量社交数据。2013年,Facebook在加州成立了Facebook AI Research (FAIR)。

卡耐基梅隆大学机器人系博士、Facebook人工智能组研究员田渊栋称,FAIR的研究方向自由宽松,研究所需的计算资源(如GPU)相对丰富,同时也没有近期的产品压力,可以着眼长远做困难和本质的研究。他称,这样的学术氛围在各大公司是极其少见的。