中美人工智能技术差距太大 不可急着商业化

今年,Facebook还曾发布自己的语音聊天机器人,并在Messenger软件中加入此类技术。其推出的DeepText文本阅读引擎,每秒可以理解几千篇帖子,精准度和人类一样,覆盖20多种语言。并可以将其自动翻译成十几种不同的语言。

不过,总体来说,Facebook在人工智能领域是一个迟到者,要参与实力竞争,需要的不只是金钱,还有长时间的积淀。当扎克伯格宣布要开发一个人工智能管家来管理家务时,事实上,谷歌和微软已经在开发AI软件了。

已经用人工智能赚钱的IBM

IBM在人工智能领域没有谷歌AlphaGo、智能汽车看起来那么酷炫,但却有着深厚的技术底蕴,甚至已经开始用人工智能赚钱。

IBM人工智能研究最为外人熟知的是1997年开发的“深蓝”,战胜了当时的国际象棋世界冠军卡斯帕罗夫。如今可以代表IBM在人工智能领域最高技术水平的,是不断进化中的Watson系统,和已经可以量产的人脑模拟芯片SyNAPSE(超大规模神经突触计算机芯片)。

Watson是一台超级计算机,最初由90台IBM的Power 7服务器并行组成。和Google、微软的人工智能相比,它从硬件芯片构架就开始模拟人类神经元,基于IBM的“DeepQA”技术开发。

2014年1月初,IBM宣布组建“Watson Group”,旨在进一步开发、商用和增强“Watson”及其他认知技术,此外还投入10亿美元用于其他相关项目。法国农业信贷银行预测,Watson系统创造的收入将在2018年占IBM总收入的12%以上。Watson已经被部署在IBM去年收购的云计算基础设施业务Softlayer上,成为IBM与亚马逊、谷歌、微软等大型科技公司在云计算领域展开竞争的武器。

另一个代表性产品是IBM在2014年发布的人脑模拟芯片SyNAPSE。该芯片能够模仿人脑的运作模式、低功耗,在认知计算方面要远胜传统计算架构。和其他芯片公司的纸上规划不同,这款芯片已达到量产要求。由此来看,IBM在人工智能技术方面的商业实力主要在于“认知计算体系”。

再反观国内,无论在对人工智能领域的认识和预见性方面,还是实际的技术研究和探索方面,无疑都是落后于美国的。且目前,人工智能的探索仍然是靠BAT等互联网巨头来引领,以往多数时间,这些公司把主要精力放在了对钱的追逐和自身业务的原始布局上。

回到国内,百度甚至像谷歌一样宣称,计划在五年内大规模生产无人驾驶汽车。李彦宏将百度无人驾驶汽车称作“一台带轮子的电脑”。

百度的人工智能研究源于2013年,百度成立深度学习研究院。据《财经》报道,早些年,百度剔除了不少经过验证没有商业化前景的相关项目,但最近两三年,明显加大了在人工智能上的投入,包括无人驾驶汽车等长期项目。

目前,百度研究院、百度大数据、百度语音和百度图像等技术都已归入人工智能技术体系。李彦宏多次向外界强调,百度未来的发展将严重地依赖人工智能。

百度高级副总裁、自动驾驶事业部总经理王劲称,百度大脑已具备视、听、说和预测、规划决策以及行动控制的能力。目前正在计划将百度大脑在金融、汽车、医疗等领域商业化。

阿里巴巴在多个领域有着超前的预见性,比如互联网金融、云计算,但在人工智能方面,阿里稍显滞后。不过,阿里进军人工智能的优势在于其庞大的数据生态,这是训练人工智能难得的食粮,是重要基矗

去年,阿里云推出了自称中国第一家的人工智能服务。这一名叫DT PAI的平台整合了阿里巴巴所使用的机器算法以及深度学习技术,将它们呈现在拖拽使用的简易界面上。阿里云表示,开发者无需编写新的代码就能利用DT PAI预测用户行为。

就在前不久,阿里宣布人工智能程序小Ai即将面对大众,提前预测湖南卫视《我是歌手》总决赛歌王归属。小Ai主要基于神经网络、社会计算(social computing)、情绪感知等原理工作。

在此之前,阿里云小Ai进行过大量的学习和训练,并在实战中成功实现交通、音乐黑马等多个领域的预测。