从陆谷孙翻译智慧看人工智能的“正道”

不过,与陆先生的翻译智慧相比,“深度学习”网络的火候还差得远。且不提此类系统的运行所需要消耗的大量计算资源,光在一个问题上就完败了:它必须有大量的训练样本,以帮助其在一类源语言词汇与另一类目标语言词汇之间预先搭建起大致的相关性关系簇;然后,它才能够依循成例,摸索出与之比较接近的“跨越方式”。但是,像陆先生那样进行创造性“跨越”的大本领,此类系统还是学不来的。

这是不是意味着陆先生的翻译智慧,任何机器都无法模仿呢?我当然也不这么悲观。现有的机器翻译进路之所以有问题,与其说是因为超级人工智能不靠谱,还不如说是业内人士太满足于玩弄工程学层面上的“奇技淫巧”了,不爱琢磨学理层面上的抽象问题。

考虑到这一点,机器翻译就不宜作为一个单独的研究项目“孤军深入”,而应当成为人工感知、类比推理机制等相关领域内的研究成果的衍生产品。这一条新进路,在国际上一般被称为“通用人工智能”。或者说得更通俗一点,按此新进路,人工智能专家与其模仿陆先生的资深翻译能力,还不如先去模仿陆先生咿呀学语时的“通用智力”,然后再求日益精进。此路看似曲折,实际上才是人工智能研究之“正道”。(文/徐英瑾)

责编:贾雪静

登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!