概念火热资本宠幸:人工智能的风口究竟在哪里?

编者按:在8月12日-13日举办的全球人工智能与机器人峰会上,国内外人工智能的领域的科学家和企业家们进行了全面的交流对话。这场今年兴起,随着AlphaGo战胜世界围棋冠军李世石而迅速火遍全球的概念,到底离我们的生活还有多远?国内外科技巨头争相布局的背后,人工智能为什么会成为资本的宠儿?它真的代表着人类社会的下一场工业革命?

文 / Sherwood

机器学习将人工智能推向大众视野

近年来,随着大量数据的支撑和算法的发展,机器能够对现实中的场景进行抓取和捕捉,并通过算法将真实场景进行数据化,使之能够对被机器识别,达到对现实的感知。获得数据化的现实场景数据后,同数量庞大的样本数据进行对比训练,实现对场景的识别,称之为机器学习。由于这两大要素涉及到计算能力、算法和大数据支撑的限制,处于实验研究阶段。AlphaGo在同李世石对弈并获胜使得机器学习热度增加,并最终进入大众视野。

在中国工程院院士、香港中文大学(深圳)校长徐扬生看来,感知、认知和动作,这三者为构成人工智能的三个要素。从计算机视觉的例子来看,要让计算机识别一张图片,首先是特征提取,对于图像中的像素进行重要性差别提取,此为感知。然后再对重要的元素进行标注,通过标记成为计算机能够识别的符号,让计算机能够理解图片的内容,此为认知。最后,计算机生成一段话对图片进行描述,这是最后一步动作。

北京航空航天大学教授王田苗认为,此前人工智能发展的50多年间历史时间里,研究人员将大部分精力放在动作方面,因为没有能力完成前两个步骤。通常说的人机交互就是三大因素中的动作,也是目前普遍能够实现的,最为常见的就是工厂里的机械手臂,通过编程人员对机器编入固定程序代码,实现机械手臂重复的动作。为什么会是重复的动作,而不是随心所欲的动作呢?原因在于人为地为机器设定了产生动作的范围和界限,并不是机器根据自己的理解后作出的回应。

也就是说,在机器学习之前,人工智能和机器人的发展主要停留在动作的研究方面,缺少感知和认知的研究,而目前的机器人学习只是人工智能在感知和认知层面的一个早期发展阶段,并且在这个阶段的研究也处于实验阶段。

人工智能领域易形成寡头垄断局面?

人工智能在今年火起来之后,不管是科技巨头还是创业公司,都希望在红利期抓住机会。国内外科技巨头不管通过自身研发还是通过收购的方式,加紧在人工智能领域的布局,想在这一领域占得先机。那么,从目前的市场来看,人工智能产业链上都有哪些公司呢?

首先是计算处理及信息储存的芯片巨头,像英特尔、NVIDIA等公司,它们处于这一领域的最上游,为中下游产业链提供计算处理能力及相关解决方案,他们决定了人工智能发展的深度。其次是大数据产业链中的原始数据获取方,包括运营商、BAT、微软、谷歌等把持互联网入口的公司,它们掌握着机器学习必须的数据资源,决定了人工智能发展的广度。

此外,还有人工智能技术的研发集团,其中自动驾驶、深度学习、语音识别以及图像识别等领域都有着各自取得领先公司和团队。由科技巨头直接牵头耕耘的,诸如谷歌自动驾驶、IBM Waston、百度自动驾驶及语音识别;有实验室和初创公司的杰出代表,如DeepMind深耕深度学习;此外,还有本身就具备雄厚实力的特斯拉自动驾驶、科大讯飞语音识别等。

然而,人工智能的研发需要持续不断的投入以及持续不断的数据积累。在人工智能研究领域有这样一个说法,人工智能需要大量的数据支持,而机器学习对于数据的反馈又会增加数据获取的数量和质量,庞大的高质量数据会更进一步加速机器学习的效率和效果,形成良性循环。这样发展下去的结果就是,这一领域内刚开始领先的公司会更加领先,而处于劣势的公司会逐渐被淘汰出局,最终形成少数几家寡头垄断的局面。

与此同时,一些处于人工智能产业链核心地位的公司,凭借自身技术与财力,通过并购和战略入股等方式,控制产业链达到垄断地位。例如,谷歌在2014年收购了人工智能初创公司DeepMind,两年后我们才看到其研发的AlphaGo击败李世石的场面。