一些关键技术早已促进了AI在交通中的广泛应用。与2000年相比,通过智能手机和各种低成本却高精度的传感器,今时今日个人数据的规模、多样性以及可用交通数据总量是相当令人震惊的。正是因为这些数据,像实时交通、道路信息预测、路线规划、拼车以及自动驾驶汽车才成为可能。
未来,人工智能在交通方面将会出现更智能的汽车(自动停车、高速巡航、路线规划等功能),以及无人驾驶汽车(不久的未来,感知算法将会在驾驶能力方面超过人类的表现。)还有交通规划(实现车与车之间的自动沟通互联),以及需求导向交通服务和与人交互的智能设备等。
未来十五年间,机械技术与AI技术的共同发展将会有助于人们安全而可靠地使用家庭机器人。这类具有特殊功能的机器人将具备邮寄包裹,打扫办公室,提高安全保障等服务功能,但是,在可预见的未来,技术方面的限制、产出可靠地机械设备所需要的高额花费将会阻碍这些具有特殊功能机器人的商业化生产。早在2001年,就已经研发出真空清洁机器人。但是,这种机器人只能够清理平坦地面的垃圾,在真实的家庭环境中楼梯,角落这些地方往往成为这类机器人的盲区。此外,目前对于机器人在真实家庭生活环境中的可移动性研究仍然存在不足。
未来,深度学习、云计算将会使家庭机器人具备语音理解,图像标记等功能,提高机器人与人们家庭生活的交流互动。此外,在研发家庭机器人的过程中,要考虑新出现的道德与隐私等问题。
一直以来,AI技术被认为在医疗领域具有广阔的应用前景。未来,基于AI技术的应用能够提高数以百万计人的健康和生活质量。但是,AI技术在医疗领域的应用要取决于医生,护士,病人对该技术的信任,获得政策,法律法规,商业市场的支持。同AI技术在其他领域的应用相同,数据资源起到举足轻重的作用。现今,主要从以下途径获取医疗数据:个人监控设备和移动应用程序,临床环境下的电子医疗记录,及用于医疗程序与手术的辅助机器人。在大量数据的支持下,该技术的主要应用包括医疗分析,支持临床决策,监控与辅导病人,能够帮助手术或看护病人的自动化设备,医疗系统管理,研发医疗机器人,移动健康应用程序,老年保健等。
过去十五年,AI技术在教育行业的应用取得了巨大进展。尽管素质教育要求师生之间的交流互动,AI能够在各个方面提高教育水平,尤其是有助于实现大规模个性化学习方式。与AI 在医疗领域的应用相似,如何更好地将人与人之间的交流互动,面对面学习与AI技术融合在一起仍将是一个重大挑战。
长久以来,机器人一直是广受欢迎的教学设备,具有代表性的是能够提高学生学业成绩的教学机器人,智能教学系统和在线学习(以大规模开放式网络课程、维基百科及可汗学院为例)。此外, AI技术(包括深度学习,自然语言处理,及其他AI技术)还可用于学习分析,主要分析学生的学习投入量,行为及成果。目前,AI技术在学校的应用尚未大规模开展起来,在一定程度上主要是因为缺乏资金来源和提高该技术有效性的大量数据。
对于AI发展的忧虑及应对方案构想
前面我们提到对AI技术未来发展趋势及应用前景的瞻望,产业界相关人士在研发与改进该技术的过程中不免对其可能引起的潜在道德问题感到担忧。昨天,来自Alphabet、Amazon、Facebook、IBM及Microsoft的研究员相聚在一起,讨论AI对人类的工作、交通甚至于战争将会带来的影响。这些产业界研究员的主要目的是保证AI研究能够造福人类,而不是对人类生活及生存构成威胁,来自微软的研究员Eric Horvitz在报告中特别强调了业界努力的重要性。
技术行业的主要忧虑在于,否应当对AI研究工作制定法律方面的限制。因此,他们正在尝试创建一种自我监管组织框架,尽管不太确定这种自我监管机制将如何运行操作。
在讨论过程中,斯坦福报告的作者们一致认为,由于AI技术能够在多领域实行多方面应用,监管控制AI研究及其发展是不切实际的,其中将要遇到的风险与将要考虑处理的问题也是多种多样的。