在人工智能爆发前 带你走近它的背后推手

从长远来看,我不觉得同为人类的棋手能够在与机器的搏杀中重占上风——无论棋类游戏的空间与规则是多么复杂,对机器而言,只要证明了某种算法行之有效,那么,在与日俱增的大数据资源、与时俱进的计算资源的加持下,其相对于人类而言的优势只会越来越大。

大数据:岂止于大

一个有趣的问题是,有关人工神经网络与深度学习的理论探讨和实践尝试已有几十年历史,然而为什么直到今天,深度学习才显现出非凡的威力?

美国联合服务协会(USAA)数据科学部部长罗伯特·韦尔伯恩(Robert Welborn)认为,2015年是机器学习商业化进程快速发展的一年。存储市场的大范围降价及存储设备制造成本的降低是机器学习领域腾飞的关键。

而当大数据和云遇见深度学习,这一计算机科学家朝思暮想了数十载的科技终于不再是无本之木。随着深度学习技术的潜能被充分释放,弈棋程序的胜利以及我们在图像识别、语音识别等领域的连番突破也就是顺理成章的事。

大数据到底有多大?根据IDC在2014年发布的一份报告,仅在2013年,人类生成、复制与消费的数据量便达到4.4ZB,即44亿TB——可以想想,这些数据需要多少个硬盘来盛装——而到2020年,这一数值将达到40ZB,年增长率40%。

很明显,云计算、移动互联网与社交网络是大数据的三大推进器。做一组数字对比就知道:

1997年,全中国胶卷消费量约为1.2亿个,而当时的人口数是12.36亿。以每卷胶卷能拍24-36张照片计,总共约40亿张照片,相当于每年每10个中国人消费1卷胶卷,拍摄3张照片。

2015年,仅小米手机用户每天新拍摄的照片就达到1亿张,而微信用户每天上传的新照片则超过10亿张,也就是小米手机用户每一个半月、微信每四天新增的照片数量就超过1997年全中国人拍摄的照片。

由对比揭示出,过去不到20年的时间里,个人计算设备生成的数据量呈现出惊人的增长态势。而要想处理好这些激增的数据,就需要强大的云存储与计算平台。以处理小米手机每日新增照片为例,1亿张照片的云相册缩略图处理就需要2400核、2.6GHz的CPU与200TB的存储空间。

况且要让手机这种设备支持某些看起来很酷很智能的功能,比如人脸检测、根据面孔特征实现身份识别和分类编目等,若没有一流云平台在背后支持,也是不可想象的。

小米手机相册就加入了一些对用户而言相当便利和人性化的功能,例如:

用户可以从合影中找到每一张人脸并看到年龄标签。

点击“面孔”分栏,所有包含人物的照片便被归入“姓名”影集中。

选择其中一张合影,应用还能标示出画面里每个人的姓名……

上述功能对于“患有”脸盲症和健忘症的朋友来说非常有用,而且也让手机看起来很“聪明”。但其实,相关的运算过程并不是在手机硬件平台上进行,而是依托于远端的“小米云相册”——至于小米云相册,其实是由金山云做支撑。

深度学习:让机器胜过人

正是因为数据量以几何级数激增,从事机器学习、神经网络等研究工作的科学家们以前认为不可能完成的训练任务,今天才能相对容易地完成。

我自己是做研究出身的,以前专攻的方向正是视频与图像内容分析及检索、计算机视觉和信息系统。关于人脸识别,早在20年前,我和团队就获得了一项专利——记得1996年,我在硅谷的HP实验室时开始研究,1997年提出专利申请,2000年获得批准(如图2、图3)。这是一个分布式的架构,数据从客户端生成,传输至后端的系统,经过一系列处理后,再将结果推送到前端。事实上,现在学界与产业所做的人脸识别、云-端图像处理研究与20年前相比,在原理方面是相近的,只是在数据资源与算法上有了极大的改进。