依图科技朱珑和他的人工智能创业经

在各种市场机会的切入中,朱珑透过各个渠道找到了苏州公安局主管技术的副局长。副局长只在课间休息给了朱珑三分钟见面机会。看着朱珑的一大堆“学术”背景,全球三大AI实验室的博士,图像目标测试的冠军,局长说:“好呀,我们现在套牌车的识别率不到30%,如果你能将识别率提升到70%,我就考虑用你们的。”因为很多名牌大学都没把这个课题做下来,局长只认效果。学术背景只能“敲敲门”,能否进来还得看你的“砖”够不够“硬”,副局长给了朱珑几个星期的时间。

找到“魔鬼”和捅开“窗户纸”

如何捅破问题的“窗户纸”?怎么优化、取舍、结合?怎么把“魔鬼”找到?需要物理学家精准描述世界的气质和找到“魔鬼”细节的感觉。

接下苏州公安局长话的活儿,朱珑和林晨曦他们做了几个维度的事情。一是研究实际应用场景,找到解决问题的关键维度。其二把图像识别理论和产业难题和业务结合,变成这个应用场景的算法模型。“AI不是产品,它需要和具体的应用场景结合,解决具体问题。”一个算法模型并不适合所有的应用场景。这两个维度都非常关键。

就像网吧监控和道路行车监控需要捕捉的关键点就不一样,车牌识别之所以识别率不高,事实上选择识别的维度同样是关键。在过去对车牌的识别焦点主要车牌上,光线、车速,都会影响它的识别效果,而且还有很多套牌车,随时换牌。

朱珑他们想到如果能够将“车牌”与“车脸”同时识别,其识别率精准率就大大提高。因为很多套牌车常常会更换车牌,但是“车脸”和“车型”却不能更换,主流车型就那么几十种,“车脸”就那么几十种种,依图是第一个想到把这两个维度结合在一起的。就像人对一个车第一眼的识别和记忆一定是“车脸、颜色、车牌”同时摄入而不只是去盯着车牌的道理一样。

似乎想到“车脸”这事不是难事,但很多事情就这么一层“窗户纸”,当所有的人都把注意力集中在车牌这个“死胡同”出不来的时候,谁能够跳出想到其他关键维度,这个灵感就是那种说不清楚的“感觉”。这个感觉应该来自两个维度,除了朱珑在各AI名师下“耳语目染”的积累,同时也应该与他们每天见5拨警察,和他们几乎是泡在一起,体会他们的现实场景和工作场景的“悟道”有关。

我搜索依图科技的公众号,看过一段朱珑与上海交大学生做讲座的视频,有几个印象很深的信息。一是朱珑说Alan Yuille给了他物理学家精准描述这个世界的“气质”。

他谈及了他的导师Alan Yuille教授,这个霍金的学生,物理学博士毕业,既在UCLA统计系任职,同时又在心理学系、计算机系、精神病学、生物行为学系任客座教授,研究过量子引力、机器视觉、生物视觉、神经建模、认知模型等。朱珑说:“这个导师给了我不一样的物理学家精准描述这个世界的气质,一种不一样的颗粒度。”

很多人应该会觉得朱珑认为导师给了他“物理学家描述这个世界的气质”,这个说法比较有趣,通常很少有人说导师给了自己一个气质。不过应该说朱珑的表述是精准的,百度里关于气质的定义是就是“表现在心理活动的强度、速度、灵活性与指向性等方面的一种稳定的心理特征。”对事物感受的强度、速度、灵活性和指向性不一样,才能做出和别人不一样的东西,这确实是朱珑老挂在嘴边的“那种感觉”。

二是“idea is cheap”,魔鬼藏于细节之处。”朱珑说,不管是在学术界还是行业领域,在全球顶级的学府、实验室和企业中,每个创新的idea都是聪明人都会想到的,而在英雄所见略同之后,决定成功的关键在于执行的每个细节中,这是由数学、物理、工程等基本功体现出来的。