依图科技朱珑和他的人工智能创业经

几个星期之后,朱珑何团队是如期做到了超过局长希望的识别率,超过了预期,也敲开了公安领域的门。除了车,后来依图又做了人脸的识别,有一个数据,依图人脸识别系统在武汉公安局的实现证件照首位命中率是97%,盘查照对比首位命中率是94%,识别对比命中率是全球领先水平。四年时间,目前依图的产品进入了公安、银行、保险、海关、电信、地产等,从识别车、识别图、识别人脸,从抓嫌犯到保平安到城市管理以及智能硬件。

为什么朱珑能够把识别率做到更好,仔细体会朱珑讲过的这些话,里面有“秘籍”。现在有很多行业的痛点,如何捅破这些“窗户纸”?怎么优化、如何取舍,怎么结合,怎么把“魔鬼”找到?这其中的“玄机”或许从朱珑的话里你会有启示。

IBM在对未来技术创新趋势分析中这样认为:未来新一代信息技术比较大的创新机会,一是在IT基础学科领域,二是在IT与行业结合点上。正是这个IT与行业的结合点,是难点也有大量的机会。比如要做输变电的创新,IT人就必须爬到电线杆上去。朱珑和他的团队就得“泡”在公安的各种场景里。只有这样才可能找到“藏在细节里的魔鬼”。

记者曾经采访IBM研究院Watson项目的研究院员,IBM一开始做Watson的时候,把业界最好各个细分领域的技术成果放入系统中,机器人回答问题的精准率并没有提高多少,却是通过不同方式的配比和调优和取舍,最后准确率不断提升到99%。

朱珑的下一个“尴尬”

进入医疗领域有几个难题,一是怎么解决医疗资源、数据源的问题,怎么把医疗经验和计算机结合?二是怎么让医生建立对机器判断的信任问题?

朱珑没有透露目前依图的销售收入。从依图官方介绍信息上看,依图目前员工是100多人,人均估值超千万美元,按照这个数字推算,依图的目前的估值超过10亿美元。目前依图还在招兵买马中。下一个领域朱珑最想做的是什么?

朱珑说了一件“自己像傻子一样”的尴尬事。去医院看病,费了很多时间取号排队,见了医生,只是几分钟就把他给打发了,开了几盒药。“什么病?什么原因?怎么得出的结论?为什么开这些药?这些药和其他同类的药有什么区别?疗效怎么样?对于我适用吗?”所有的问题全部没有答案,就领了一堆药回去了。“一个顶级的IA科学家在医疗领域看病的时候完全就是一个傻子。”

“我得解决人在生命面前变成医学‘文盲’的这个脆弱”。朱珑决定进入医疗领域,从识别医疗图像入手,怎么就知道这个片子上有病灶?怎么就知道它是不是癌症?朱珑给学生做讲座的时候说过一句话,人眼不容易分辨出双胞胎的细微差异,但是计算机很容易就分辨出来,机器可以看到人眼看不到的东西。AI应该帮助医生提高诊断质量和盖上患者就诊体验,朱珑接下来想重点做这个事情。

进入医疗领域有几个难题,一是怎么解决医疗资源、数据源的问题,怎么把医疗经验和计算机结合?二是怎么让医生建立对机器判断的信任问题?记者曾经采访过英特尔中国研究院院长宋继强谈及IBMWatson在医疗领域的推进,宋继强认为,目前Watson最大的成果是已经建立起医疗机构、医生对Watson的一定的接受度和信任度。

大公司有大公司的玩法,创业公司有创业公司的路数。朱珑曾经说,目前各大公司在AI上的水平怎么样其实他清楚,因为在这些公司的做AI核心人是他的同学或做研究的前同事,这个人在做什么,水平如何,能做到什么程度,彼此清楚。

所以在不在核心圈子,是不是关键人很重要,对于进入一个新的领域也应该同理,都要找到对的核心人。就像当初朱珑找林晨曦,除了他俩是同学对路子外,林晨曦做云计算,有大规模分布式计算的能力,和朱珑的机器视觉能力互补,计算能力和AI能力是图像识别都需要的两方面。接下来朱珑会找一个有医疗核心资源的人。

“一个人是不是我想找的人,是一种感觉,交谈10分钟能够知道。”朱珑说有了第一步才有可能有第二步,只有解决了第一个问题,把东西做出来,效果显现出来,才有可能建立信任度和接受度的问题。创业公司要做的不就是把一个个的“0”变成“1”吗,有了“1”才有可能“2”有“3”,“3”生万物嘛。什么时候创业都有机会,因为这个世界永远都需要更便宜、更高效的解决之道。