英国政府发布AI报告 欲用AI创新提升英国国力

技术变革可能导致特定工作技能更快地消失,人们更换工作的频率可能会更高。这需要个人在整个职业生涯中不断对自己进行再培训,积极主动、乐于改变并具备职业弹性。这也意味着,跨领域的“通用”技能(如解决问题和思维灵活性)的价值性将越来越高。

政府的作用是促进新技能的开发,让工人接受再培训,以便他们在各自工作中使用人工智能,或转向注重人际交往能力(如共情和创造力)的工作领域。

新的挑战

重要的是要认识到,除了人工智能提供的巨大利益之外,还存在与一些与其用途相关的潜在伦理问题。许多专家认为,政府在管理和减轻可能出现的任何风险方面都可以发挥作用。任何工作都需要考虑两个广泛的领域:

了解机器学习方法与创建日益增加的个人数据的结合,可能对个人自由以及隐私和同意(consent)等概念产生的影响

适应由人工智能进行决策的问责概念和机制

统计分析使用过去的数据预测不同群体可能的行动或质量,这种方法广泛应用于公共和私营部门。对于保险公司,统计分析能更好地评估风险。对于商家,统计分析能更好地定位用户。对于执法,统计分析能更准确地评估威胁。

基于种族、生活方式或居住地的分析所产生的风险是对个人持有成见,不过这种风险可以予以规避。在英国公共行业使用这些技术的组织往往避免使用种族、国籍或地址作为标准,避免遭受不公平歧视的指控。“无罪推定”原则对上述推测方法的应用提供指导,该预测方法通常用于将警务资源分派到那些提前干预对目标个人有好处(而非做表面工作)的街区。当然,其他执法机构需要具备准确确定个人目标的能力,以避免被成见想法误导,从而更好地利用警务资源。

人工智能技术还有可能从公用数据中推导出某类私人信息,如个人或和个人有关的其他人员(如朋友、亲戚或同事)的在线行为。该信息可能超出个人起初同意披露的范围。

信息委员会的匿名行为条例,就相关部门管理此类风险并防止从综合匿名数据中重新识别个人的方法,作出明确规定。然而,随着公共数据量不断增加,以及更为强大人工智能技术逐渐得到开发,之前可能性极小的个人重新识别将变为不可避免,因此各组织部门需要定期重复检视其防护措施情况。

算法偏差可能导致偏见的风险。该偏差主要来源于深度学习系统的训练数据,比如某所大学利用机器学习算法来评估入学申请。用于训练算法的历史入学数据(有意或无意)反映出提前录取过程的某些偏差。偏差会以这种方式在社会中永久存在,造成不公平现象的恶性循环。为消除该风险,技术人员应该确定其数据中的偏差,并采取措施评估这种偏差的影响。上述问题当前成为英国甚至全球各大学计算机科学系、政策智库和报社争论的主题。争论的焦点是治理问题以及社会实际应对方式。

许多专家和评论家建议,确保问责的透明度是必要的:明确使用了哪些算法、哪些参数、哪些数据实现了什么目的将是必要的,这样才能确定人工智能技术是否被负责任地使用。

有时,还需要平衡安全或商业重点与透明愿望之间的关系:更简单地说,弄清算法参数可以看出个人和企业钻系统漏洞,更改其应对行为的情况。根本的问题是,透明不会为人提供所要寻求的证据:仅仅提供静态代码不能保证该代码实际运用于特定决策,也不能保证该代码行为方式和程序员在给定数据集中所预期的一致。

计算机科学家和政策专家目前正在开发技术解决方案,解决上述算法责任问题。未来将有可能证明“程序规范性”或给定算法应用的一致性。另一种方法是利用机器学习技术,找出算法应用中非一致性或异常结果。

人为判定人工智能评估方法是否成功重点在于,用数据检验算法所获得的信息量大于对算法的单独关注,而通过人与系统的互动对算法和数据进行研究所获得的信息量则更大,因为人的行为会生成更多数据和反溃分析人员在评估其所编写的算法的潜在影响时,使用的工具在应对现实情况方面应当具有一定的敏感性。开发人员在鉴别风险时需要考虑到整个社会的应用情况。