Jennifer Chayes
微软新英格兰研究院院长兼微软纽约研究院院长,杰出科学家
● 2017年,机器学习算法领域将有哪些重大进展?
深度学习正在许多方面改变我们的技术,然而,当今的深度学习算法很大程度上仍然是启发式的——基于该领域领导人物的经验和直觉。2017年,我们将开发一种更有原则性的方式来理解深度学习,以及由此得出更加强大的算法。这些洞见将来自诸多领域,包括统计物理学和计算机科学的交叉学科。
● 2027年机器学习算法领域的重大进展或热门话题将会是什么?
人工智能和机器学习算法大大改善了我们的生活。然而,目前的算法常常再现了我们数据中的区分性和不公平,并且受到输入误导数据的操纵。未来十年算法方面的一个重大进步将是开发出更加公平、可追责、且更不容易被操纵的稳健算法。
Susan Dumais
微软雷德蒙研究院副院长,杰出科学家
● 2017年,搜索和信息检索领域将有哪些重大进步?
搜索和信息检索中的深度学习将盛行。过去几年,我们看到语音识别、图像理解和自然语言处理等领域取得突破,这是全新深度学习架构与更多数据和更强大计算能力结合的结果。明年,深度学习模型将继续提高网络搜索结果的质量,实现文档理解和查询契合度方面更全面的改进。
● 2027年,搜索和信息检索领域的重大进步或热门话题将是什么?
搜索框将消失。它将被更加无处不在、嵌入式、对上下文敏感的搜索功能所取代。我们通过语音查询而看到这一转变的开始——尤其是移动和智能家庭场景。这一趋势将会加速发展,并且能够发起包含声音、图片或视频的查询,无需提出明确的查询就能利用上下文来主动检索与当前位置、内容、实体或活动相关的信息。
Sara-Jane Dunn
微软剑桥研究院科学家
● 2017年,生物计算领域将有哪些重大进展?
尽管人们广泛使用计算和工程类比来“解释”生物学,但是细胞所执行的计算并不需要、实际上也并没有与芯片计算扯上关系。短期内的重大进展将是一个理解生物信息处理的理论基础,它将作为我们寻求设计、修改或重新编程细胞行为的基矗
● 2027年,生物计算领域的重大进展或热门话题将是什么?
如果我们可以想象编程生物学终将实现,那么在未来10年,我们将在农业、医疗、能源、材料和计算等领域开拓全新的行业和应用。尽管过去50年已经因为芯片编程能力而彻底改变,我们将进入下一个编程革命:生命软件时代。
Mar Gonzalez Franco
微软研究院新体验与新技术部研究员
● 2017年,虚拟现实领域将有哪些重大进展?
2017年,我们将看到拥有更好的人体追踪技术的虚拟现实设备出现。其积极的结果就是能够从第一人称的视角体验到虚拟化身。
● 2027年,虚拟现实领域的重大进展或热门话题将是什么?
到2027年,虚拟现实系统将无处不在,并且能够提供丰富的多种感官的体验,从而产生融合或改变“感知现实”的幻觉。利用这一技术,人类将重新训练、调整并改进其感知系统。与目前只能刺激视觉和听觉感官的虚拟现实系统相比,未来虚拟现实的体验将扩展到其它感官——其中包括通过触觉设备而获得的触觉。