Facebook人工智能大揭秘:为何AI如此不可或缺?

AML团队总是在找寻机会,将神经网络的强大功能融入不同的团队,帮助他们在Facebook层面创造独特的产品功能。AML知觉团队主工程师Tommer Leyvand说:“我们正在使用机器学习技术构建自己的核心竞争力,满足用户的需求。”(FYI,他也是从微软跳槽来的!)

(Facebook技术产品经理Rita Aquino,雷锋网(公众号:雷锋网)注)

最近新出的一个叫做“社交推荐”的功能也是一个很好的例子。大约一年前,一个AML的工程师和Facebook分享团队的一个产品经理谈到了公司可以介入的一个场景:当人们询问朋友有什么可以推荐的当地餐厅的时候。“那么Facebook可以怎样把推荐的信息展示给用户呢?“Rita Aquino说道。分享团队一开始使用词汇匹配的方式回应推荐指令。但是Aquino说:“当每天有数十亿的推送时,精确和升级的要求就不是必须的了。” 通过对神经网络的训练和使用真实数据对模型的测试,他们已经可以探查非常细微的语言区别,准确地探查到哪个用户正在询问某地区内的餐厅或商场,进而触发一个指令,将相关的链接展示在用户的News Feed上。接着当某人提供了一个推荐时,机器学习会在用户的News Feed上显示出餐厅或商场的地理位置。

Aquino说,她在Facebook的一年半时间里,见证了人工智能从产品中的边缘成分变成了产品概念产生的来源。她说:“人们期望与他们交互的产品能够更加智能。而团队在创造产品的时候,并不需要成为一个机器学习专家。” 在处理自然语言的例子中,AML建立了个一个叫做 “Deep Text” 的系统,让其他团队可以轻松访问,用机器学习辅助Facebook每日使用超过40亿次的翻译功能的实现。

对于图像和视频,AML团队建立了一个叫做“Lumos”的机器学习视觉平台。平台起初是由Manohar Paluri创建的,后来FAIR的一个实习生在此基础上设计了一个大型机器学习视觉系统,他称之为Facebook的“视觉皮质”,一种处理和理解Facebook上所有图像和视频的方法。在2014年的编程马拉松上,Paluri和同事Nikhil Johir在一天半时间里创建了一个产品原型,并向扎克伯格和Facebook首席运营官Sheryl Sandberg展示了结果。在Candela开始组建AML团队的时候,Paluri 也加入进来(他同时在AML 和FAIR 任职),领导计算机视觉团队,完善Lumos 平台,帮助Facebook 的工程师(包括Instagram、Messenger、WhatsApp 和Oculus)使用视觉处理方法。Paluri 说:“在Lumos 上,公司里的每个人都可以使用神经网络的各种功能来构建自己的模型方案。这样除了AML 团队,公司内的其他人都可以修正、训练、推动系统的发展。“

Paluri 给我做了一个快速展示。他在笔记本上启动Lumos,做了一个简单的任务:改进了神经网络识别直升机图像的能力。屏幕上出现了一个大概有5000个直升机形象的页面,其中也有一些不是直升机(一个是玩具直升机、一些是从直升机视角拍摄的天空),这些数据是Facebook 从用户发布的照片中收集来的。即使我完全不是一个工程师,更不懂人工智能,但是也可以简单地点击负面样本来训练图像分类器分辨直升机。最终,这个分类步骤,所谓的有监督学习,会完全自动化,利用机器学习方法,神经网络会自动探索图像中的物体,实现“无监督学习”。Paluri 说Facebook 正在为此努力,“我们的目标是明年将人工注释减少到百分之一。”

长期来看,Facebook 会将“视觉皮质”融入进自然语言平台上,帮助Candela 所谓的内容理解引擎进行一般化扩展。Paluri 说:“毫无疑问,我们会将他们结合在一起,也许就叫做……大脑皮质。”

Facebook 的最终目标是将机器学习的核心原理通过发表论文等方式,扩展到甚至是公司之外的领域。Mehanna 说:“大家不用在花费大量时间创建智能应用,我们可以进展得更快。想象一下,它的影响可以涉及到医药,安全,交通等各个领域。我认为这些领域的应用开发速度会有百倍增长。”