人工智能和机器学习的发展将重塑医疗卫生行业

全球只有小部分科学信息被真正使用或科学家可以使用,因为每30秒钟就有新的与医疗卫生有关的研究成果出现。BenevolentAI能对大量数据进行分析,给专家提供他们需要迅速加快药品研发的见解。最近,该公司确定了可能对阿尔兹罕默氏病有作用的两种化合物,吸引了制药公司的注意。

随着ML和AI的进步,未来药品研发看起来很有希望。最近谷歌研究院的论文指出,使用不同来源的数据可更好确定哪些化合物可用于“有效治疗不同季度的药物”,ML如何在大规模测试数百万种化合物上节省大量时间。

发现和控制新疾病

多数疾病远不是只有简单的基因突变。尽管医疗卫生系统生成了大量(无序)数据——质量不断提高——但人类以前没有必要的硬件和软件进行分析,形成有意义的见解。疾病诊断是复杂的过程,涉及到各种因素,从病人的皮肤纹理到每日吃的糖数量。过去2000年,医生都是根据病人症状来开药。

但出现可检测到的症状时,治疗疾病已经太迟,特别是在治疗癌症和阿尔兹罕默氏病等疾病时。有了ML,可以在出现可检测症状很早前,就能发现微弱的疾病信号,提高了病人的生存几率和增加了治疗选项。旧金山的新创公司Freenome开发了自适应基因组引擎,帮助动态检测血液中的疾病信号。

为此,该公司使用你的freenome,动态收集你血液中漂浮的基因物质,这些物质可以随时间不断改变,从而提供了了解你成长、生活和老去过程的基因组计。在疾病诊断和治疗计划上,Enlitic等公司关注通过将深度学习与医疗数据结合,从数十亿临床案例中提炼可用的见解,提高病人的治疗效果。

IBM的沃森与纽约的纪念斯隆-凯特琳癌症中心合作,消化过去数十年使用的大量癌症病人数据和治疗方法,给治疗独特癌症病例的医生提供治疗选项。在伦敦,谷歌的DeepMind收集摩非眼科医院的医疗记录分析研究的数字扫描数据,帮助医生更好理解和诊断眼科疾玻

同时,DeepMind也有帮助头颈癌病人放射治疗的项目,给肿瘤医生释放几个小时的规划时间,使他们能关注更多以病人治疗为导向的任务。

意义何在

AI/ML在医疗卫生的应用重塑了该行业,使曾经不可能的事情成为现实。由于AI/ML在医疗卫生的流行,持续访问相关数据对成功很重要。系统消化的专有数据越多,就会变得越智能。因此,各家公司都尽力获得数据。例如,IBM在2016年2月以26亿美元收购了医疗分析公司Truven Health,主要是为了获得他们数据和见解库的访问权。

此外,他们最近与Medtronic合作,通过访问实时胰岛素的数据,进一步提高沃森理解糖尿病的能力。随着数据越来越丰富,技术越来越先进,机会也会不断增加,从而激发医疗卫生从业者寻找新方法提高人类健康和生活水平。(木秀林)

登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!