本文作者:周翔
导语:数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而一款新药的平均研发成本高达26亿美金。
雷锋网按:开发新药是是一项漫长而且低效率的工作。数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而且一款新药的平均研发成本高达26亿美金。
药物研发人员需要对各种不同的化合物以及化学物质进行测试,这个试验过程中的错误尝试耗费了太多的时间和金钱。由于需要测试的分子太多,研发人员不得不使用移液机器人一次测试几千种变体,然后选择最有效的变体进行动物模型或者细胞培养试验,希望其中一些最终能够进入人类临床试验阶段。
由于不断试错的成本太高,越来越多的药物开发厂商开始转向计算机和人工智能,希望利用这种技术来缩小潜在药物分子的范围,从而节省后续测试的时间和金钱。为了识别那些有很大潜力可以作为药物靶标的蛋白质的编码基因,这些厂商把希望寄托了算法上。目前,一些新的算法模型(包括近日发布在《Science Translational Medicine》上)增加了新层次的复杂性,用来缩小相关蛋白质、药物和临床数据的范围,以便更好地预测哪些基因最有可能让蛋白质和药物结合。
“许多原因都可能导致药物研发失败。”遗传流行病学家Aroon Hingorani说,“然而,其中一个主要的原因是没能针对疾病选择正确的靶标。”一种药物可能在细胞、组织、以及动物模型的早期实验中显示初步的前景,但是这些早期实验往往过于简单,很少使用到随机盲法实验进行对照。科学家们会使用这些结果来预测哪些蛋白质可以作为药物标靶,但是由于这些研究往往规模很小而且时间较短,因此有很多因素会造成误判。
然而,Hororani的小组并没有依赖这些有局限性的试验,他们建立了一个将基因信息、蛋白质数据结构和已知药物的作用过程相结合的预测模型。最终,他们获得了将近4500种潜在药物靶标,相比之前预测的可成药人类基因组数量,翻了一倍。然后,两名临床医生梳理出了具有正确形状和化学物质的144种药物,除了那些已经发现的可与之相结合的标靶蛋白外,这些药物还可以与其他的蛋白质结合。由于这些药物此前已经通过了安全测试,这意味它们可以很快被用于治疗其他疾玻对于药物开发商来说,时间就是金钱。
研究人员估计,大约15%~20%的新药成本都耗费在探索阶段。通常情况下,这意味着高达几亿美元的支出,以及3~6年的工作。如今,有人希望通过AI将这一过程缩短至几个月,并大幅降低研发成本。不过,目前市场上还没有一款药物是AI系统一开始挑选出来的,但是他们正在走上正轨。
Hingorani的合作者之一是BenevolentAI生物医学信息学副总裁。BenevolentAI是一家英国AI公司,最近刚刚与Janssen(强生旗下子公司)签署了一项收购和开发临床试验候选药物的协议。他们计划在今年晚些时候开始IIb阶段的试验。(IIa阶段会先入组少量受试者,确立合适的治疗剂量;IIb则是在a的基础上有效组扩大样本量,明确剂量等有效性、安全性。)
此外,其他制药企业也在纷纷跟进。据雷锋网(公众号:雷锋网)了解,上个月,日本眼药巨头Santen与位于Palo Alto的twoXAR公司签订了一份协议,Santen将利用twoXAR的AI技术来确定针对青光眼(glaucoma)的候选药物。而几个星期 之前,两家欧洲公司——Pharnext和Galapagos也宣布展开合作,开发AI系统模型用来寻找神经退行性疾病(neurodegenerative diseases)的新疗法。
但是,长期从事药物开发研究的Derek Loewe在《Science》的个人博客上撰文称,他对于这种纯粹的计算方法持怀疑态度。“从长远来看,我并不觉得这个东西是不可能的。”他说,“但是如果有人告诉我,他们能预测所有这么多化合物的活动,那么我可能会认为这是在胡说八道。在相信之前,我想看到更多证据。”
像twoXAR这样的公司就正在努力建立起这样的证据。去年秋天,他们与斯坦福大学的Asian Liver Center(亚洲肝病中心)合作,为成年肝癌患者筛选了25000种候选药物。他们利用自己开发的计算机软件,结合遗传、蛋白质组学、药物和临床数据筛选了出了10种可能的药物。