2015年,纽约西奈山医院的研究团队获得灵感,将深度学习应用到医院中庞大的病例数据库中。这个数据集中有攸关病人的数百个变量,包括测试结果以及医生诊断等。由此产生的程序被研究人员命名为Deep Patient,它被利用70多万名病人的数据训练。但测试新的病例时,它展现出令人不可思议的能力——非常擅长预测疾玻无需专家指导,Deep Patient可以在医院数据中找出隐藏模式,并通过病人的各种症状确认疾病,包括肝癌。西奈山医院团队的项目领导者约珥·杜德利(Joel Dudley)说:“利用病例数据,许多方法都能预测出疾病,但我们的方法更好用。”
与此同时,Deep Patient也让人觉得有点儿困惑,它对于诊断精神疾病(比如精神分裂症)非常准确。但是众所周知,即使是医生也很难诊断精神分裂症,为此杜德利想知道为何Deep Patient具备这样的能力,但他未能找到答案,这种新工具未提供任何线索。如果像Deep Patient这样的工具真能帮助医生,在理想情况下,它应该可以提供预测推理,以确保其结论的准确性。但杜德利说:“虽然我们可以建立模型,可是我们真的不知道它们是如何做出决定的。”
AI并非总是如此。从一开始,就有两个学派就如何理解或解释AI产生分歧。许多人认为,根据规则和逻辑开发的机器最有意义,因为它们的内部运作是透明的,任何人都可以检查它们的代码。其他人则认为,如果机器能够从生物学中获得灵感,并通过观察和体验学习,更有可能出现智能。这意味着,计算机具备了编程能力。它们不再需要程序要输入指令以解决问题,程序本身就可以基于示例数据和期望输出产生算法。根据后一种模式,这种机器学习技术后来进化为今天最强大的AI系统,机器本身就是程序。
最初,这种方法在实际使用中十分有限,20世纪60年代到70年代,它在很大程度上依然被限于“场地边缘”。随后,许多行业的计算机化和大数据集出现重新引发人们的兴趣。这鼓励更强大的机器学习技术诞生,特别是最新被称为人工神经网络的技术。到20世纪90年代,神经网络已经可以自动数字化手写内容。
但是直到2010年初,经过几次巧妙的调整和改进,更加庞大或更有深度的神经网络才在自动知觉方面有了巨大进步。深度学习是促使当今AI呈现爆发式增长的主要驱动力,它赋予计算机非凡的能力,比如像人那样识别口语的能力,代替手动向机器输入复杂代码的能力等。深度学习已经改变了计算机视觉,并大幅改进机器翻译。现在,它正被用于指导医疗、金融以及制造业等领域的各种关键决策。
与手动编码系统相比,任何机器学习技术的运作本质上都是不透明的,即使对于计算机科学家来说也是如此。这并非是说将来所有AI技术同样不可预知,但就其本质而言,深度学习是特别黑的“黑箱”。你无法透视深度神经网络内部看其如何运行。网络推理实际上是数以千计的模拟神经元的共同行为,它们排列成数十甚至数百个错综复杂的互联层中。第一层的每个神经元都会接收输入,就像图片上的像素强度,然后进行运算,并输出新的信号。这些输出会进入更复杂的网络,即下一层的神经元中。这样一层层传递,直到最后产生整体输出结果。此外,还有被称为“反向传播”的过程,通过调整单个神经元的计算,让网络了解到需要产生的“期望输出”。
图:艺术家亚当·费里斯(Adam Ferriss)利用谷歌Deep Dream程序创造的图像
深度网络的多层结构让它能在不同的抽象层上识别事物,以被设计用于识别狗狗的系统为例,较低的层次可识别颜色或轮廓等简单的东西,更高的层次则可识别更复杂的东西,比如皮毛或眼睛等,最顶层则会确定其对象是狗。同样的方法也可被应用到其他输入方面,这些输入可让机器自学,包括演讲中所用词汇的发音、文本中形成句子的字母和单词或驾驶所需的方向盘动作等。
为了捕捉和更详细地解释这些系统中到底发生了什么,研究人员使用了许多巧妙策略。2015年,谷歌研究人员修改了基于深度学习开发的图片识别算法,它不需要在图片中发现目标,而是生成目标或修改它们。通过有效地反向运行该算法,他们发现这种算法可被用于识别鸟或建筑物。