怎么办?机器带来的新型知识我们无法理解

虽然AlphaGo已经证明自己是世界级棋手,但它并不能说出让人类棋手能够学习的实际原理。该程序并不是通过开发一般性的玩法规则来运作,而是通过分析特定棋局下怎么下成功概率最高。相比之下,IBM玩国际象棋的Deep Blue计算机则编入了一些有关好招数的一般性原则。正如克里斯托弗·科克(Christof Koch)在发表在《科学美国人》(Scientific American)的文章中所说的,AlphaGo的智能依靠的是其模拟神经元之间的数十亿个连接。它创造出的模型让它能够做出决策,但那个模型极其复杂,而且是有条件的。其巨量的应变计划带来的结果除了战胜人类之外,别无其他。

因此,如果你想要用你微不足道的大脑去理解AlphaGo为什么会选择了特定的一步棋,其“解释”很可能涉及加权连接的网络。那些连接会将其结果传递到下一层的神经网络。你的大脑不可能记得住所有的那些权重,即便它记得住,它也无法进行导致下一个神经网络状态的那个运算。即便它能够进行,你也不知道该如何去下围棋,或者说不知道AlphaGo是怎么下围棋的——只是内化人类棋手神经状态的运行原理,并不能帮助你理解他为什么会下特定的一步棋。

围棋只是游戏,因此我们跟不上AlphaGo的决策路径或许并不紧要。但如果是说神经网络将能够让我们分析双基因疾病中基因的交互呢?如果是说使用神经网络来区分大型强子对撞机中单个粒子和多个粒子的衰变模式呢?如果是说使用机器学习来帮助辨别政府间气候变化专门委员会所追踪的20个气候变化模型中哪一个是最准确的呢?这类机器可给我们带来很好的结果——例如:“恭喜!你刚发现了希格斯玻色子!”——但我们无法跟上他们的“逻辑推理”。

很显然,我们的计算机在辨识、发现模式和作出结论的能力上已经超过了我们。那是我们使用它们的其中一个原因。现在我们能够让我们的计算机将模型按需做得尽可能地大,而不用缩小现象来迎合相对简单的模型。但这似乎也意味着,我们所知道的东西要依靠机器的输出结果,而那些机器的具体运作我们却是无法跟上,无法解释,无法理解的。

自我们最早用木棍来刻凹痕以来,我们一直都是利用世界上存在的东西来帮助我们理解这个世界。但我们从未像现在这样依靠并不符合人类逻辑推理模式的东西——我们知道每一个凹痕代表的是什么——我们无法后续去理解我们没有知觉的合作伙伴是如何得出那些答案的。如果说知识总是意味着能够解释和确证我们的真正信念——古希腊哲学家柏拉图提出的概念,已经有两千多年历史——那我们要怎么去理解一种新型的知识呢?要知道,这种知识不仅仅是难以去解释确证,而是无法解释确证。

两个著名模型

1943年,美国陆军工程兵部队派意大利和德国的战俘去打造史上最大比例的模型:200英亩大,表示美国41%连通密西西比河的国土面积。到1949年,它被用来进行模拟实验,以判断如果河水从这个点或者那个点涌入,城镇会发生什么状况。该模拟试验被认为帮助防止奥马哈市在1952年出现洪灾,要是没有它,洪灾可能会导致该城市遭受6500万美元的经济损失。事实上,有人甚至表示那些模拟实验要比现有的数字模型更加准确。

水还是另一个著名的物理模型的重要组成部分:新西兰经济学家奥尔本·威廉·休斯古·菲利普斯(Alban William Housego Phillips)于1949年打造的MONIAC(货币国民收入模拟计算机)经济模拟器。MONIAC使用透明管道中的有色水分来模拟凯恩斯经济政策的影响。它并没有密西西比河模拟器那么可靠,这可能是因为它没有将影响国家经济状况的所有变量考虑进来。但经由像密西西比河这么大的河流的水流也会受到很多人类无法列出的变量的影响。那密西西比河模型是如何得出与现实情况相差无几的预测的呢?

如果你想要预测在急流的边缘放置巨石的话会发生什么,你不必去理解流体动力学的方方面面:你只需要建造一个将小岩石放进小的水流的比例模型。只要模型比例无关紧要,那你的模型就会给你答案。正如高级水力工程师斯坦福·吉布森(Stanford Gibson)就密西西比河流域项目所说的,“物理模型会自行模拟所有的过程。”