怎么办?机器带来的新型知识我们无法理解

MONIAC利用水流来模拟经济理论,“贮水池代表家庭、企业、政府和经济体中的出口和进口部门”,代表收入、支出和GDP(国内生产总值)。它所考虑的变量受到可装入一个冰箱大小的设备的阀门、导管和贮水池的限制。

密西西比河流域模型似乎没有对会影响洪水的因素进行假设,除了假定除非你给该系统注入了更多的水,否则洪水不会发生。但当然,那并不是真实情况。该模型假定,全尺寸会发生的事情在1/2000尺寸时也会发生。事实上,该模型水平比例是1/2000,垂直比例是1/100,这种设计“可确保地形变化显而易见”,这也导致落基山脉不成比例,离地面50英尺高。该模型的建造者假定山脉的高度不会影响其实验的结果,这显然是对的。同样地,他们没有模拟月亮的位置,也没有在田地里种植微型庄稼,因为他们假定那些因素是不相关的。

因此,密西西比河的“无理论”模型行得通不只是因为“该物理模型会自行模拟所有的过程”,还因为该物理模型纳入了有关重要的因素的假定,那些假定给模型的建造目的提供了准确的结果。使用密西西比河模型来模拟气候变化的影响或者明轮推进器对藻类生长的影响,不会带来可靠的结果,因为那些影响可能会受到不在模型当中的其它因素的影响,因为那些影响对于模型比例很敏感。

即便是在密西西比河模型奏效的情况中,我们也不理解它为什么会行得通,怎么会行得通。它并不是基于密西西比河流域的数学模型建造而成的,它是没有生成这样的模型就能奏效。确实,它行得通是因为它不需要我们去理解它:它让模拟的物理现象自行去演变,而无需在它上面施加人类逻辑推理的限制。因此,这种模型比像MONIAC这样的根据人类的理论和理解建造出来的模型要准确。

直到机器学习出现之前,我们除了手动设计模型然后让计算机来实施之外别无选择。我们假定,提升预测能力的途径就是让模型变得更加具体更加准确,同时给那些手工制作的模型积累更多更好的数据。由于那些模型是人脑的产物,知识和理解会是紧密相关的。

但事实上,那种假定是基于未表达出来的假定。

可知性假设

在佛罗伦萨的伽利略博物馆,有一可追溯到1953年的浑天仪,在房间中它显得特别大。它由多重金属制和镀金的木制齿轮组成,齿轮在外部的圆圈层里面。将其外围的子午环设定成“与地平线垂直,与实际的子午线平行”,然后将其朝向太阳或者已知的恒星,它就会准确地显示天体的位置。这个模型可带来有关物体在地球天空的哪个位置出现的可靠知识,但它所使用的模型却是完全错误的。

这种浑天仪符合古希腊的理解:地球处在宇宙的中心,天体围绕完整的圆圈运转。要模拟行星在空中的非圆形的偏心运动,圆形齿轮必须要以复杂的方式与其它的圆形齿轮相连。

古代的理解让我们觉得很神奇。但它最根本的假定跟我们的还是相符的:认识世界的条件是世界是可认识的。如果实体之间没有相似性,所有的情况没有统一的规律,物体没有实质性的分类,差异性底下找不到简单性,那么我们就会处在不可知的混乱当中。

所幸的是,我们并没有处在这样的世界当中。得益于开普勒、哥白尼、伽利略、牛顿等人的贡献,我们不仅仅能够比最好的浑天仪更准确地预测天体的位置,还能够以前所未有的方式去认识这个世界:有些对我们而言足够简单的定律让我们能够发现和理解它们。这些定律可应用于任何地方,可应用于任何事情上。它们代表宇宙的真理。

对我们来说重要的是,带来知识的模型也能够准确地反映世界的运转方式。即使浑天仪所产生的结果跟牛顿定律是一模一样的,我们也会坚持认为在牛顿定律之前出现的那个模型是错误的。我们会坚持认为,古代人并不理解世界的运转方式,因为他们所使用的模型并不能反映实际状况。

我们坚持认为,该模型反映世界的运转,是因为我们假定模型所反映的世界是可认识的。

但我们现在有一种不同的模型。跟传统模型一样,它们能够使得我们做出准确的预测。跟传统模型一样,它们能够带来知识。但有的新模型是无法理解的。