人工智能对医生来说,是助手还是对手?

作者:大壮旅

按:今年,人工智能在各个垂直领域的应用备受关注,其中医疗又是一个关键领域。《纽约客》发表的这篇深度长文,从医学和计算机两个领域详细描述了业内人士如何看待人工智能在医疗诊断方面的应用。作者Siddhartha Mukherjee是医学领域专家。本文发布在《纽约客》网站,雷锋网整理编译。

去年11月的一个深夜,一位Bronx的54 岁老妇来到哥伦比亚大学医疗中心,她说自己头痛欲裂,视力已经开始模糊,左手也变得麻木且不听使唤了。医生进行初步检查后决定对老妇的头部进行 CT 扫描。

转眼几个月过去了,今年 1 月份的一个早晨,四位还在培训中的放射科医生挤在医院三楼的一台电脑前。放置这台电脑的房间没有窗户,除了屏幕的光,里面完全是漆黑一片,就像一片深海。四位医生盯着屏幕看时,哥伦比亚大学的神经放射科主任 Angela Lignelli-Dipple 正拿着铅笔和平板电脑站在他们身后。他们可不是在搞什么秘密项目,主任只是在训练这些菜鸟医生如何看懂 CT 扫描而已。

“如果 CT 上大脑的区域变灰,我们很容易就能诊断出病人是否中风了,”主任说道。“要想取得较好的治疗效果,就必须赶在神经细胞大量死亡前诊断出病因。”中风一般因堵塞或出血引起,神经放射学家有大约 45 分钟的窗口期进行诊断,这样医生才能及时采取干预措施,如溶解正在不断膨大的凝块。“如果你们当时身处急诊室,每分钟都是极端宝贵的,因为大脑的某部分正在死亡,时间就是生命。”主任补充道。

时间一分一秒流逝,主任看了看墙上的挂钟,问道:“找到问题出在哪了吗?”

中风通常是不对称发展的,毕竟脑部供血会分左右,继而细化为细小分支。不过,一旦出现凝块或出血,就会影响一个分支,使大脑部分区域出现异常。随着神经细胞因为缺血而逐渐死亡,组织会略微肿胀,在扫描时,解剖结构之间清晰的边界可能会变模糊,最终组织会皱缩,并产生干燥的阴影。但需要注意的是,这块阴影通常在中风后几小时或几天才出现,而这时医生干预的窗口期已经结束了。主任表示:“在这之前进行扫描的话,你只能在 CT 图像上看到一些蛛丝马迹。”而这就是中风的前兆。

好啦, 现在说回文章开头提到的 54 岁老妇,她的 CT 扫描是对头骨的横切面切割额图,看起来就像从底部一劈到顶的甜瓜。坐在电脑前的医生们浏览着图层,把小脑、海马区、岛状皮层、纹状体、胼胝体、脑室等都分得清清楚楚。随后,其中一名快 30 岁的男医生在一张照片上停了下来,他拿铅笔指着大脑右侧边缘区域说道:“这一块有点不对劲,边缘区域看起来有些模糊了。”不过,对笔者来说,从这张像素不怎么清晰的模糊照片怎么能看出有用的信息啊,但那位男医生显然看到了一些不同寻常之处。

“哪里模糊了?”主任问道。“你能说清楚点吗?”

这名医生没着急回答,他停下来在脑中组织了词语,想想到底该怎么解释。随后,他耸耸肩表示:“它确实不太正常,我也不知道有什么毛病,只是看起来比较有趣。”

接下来,主任又拿出了第二张 CT 片,这是第一张拍摄后 20 小时后扫描的。刚刚那位医生指出的部位在这张片子中已经肿胀的像葡萄那么大了,而且颜色也暗了下来。随后主任又拿了一系列的片子让他们看,图中慢慢出现了一个明显的灰色楔形区域。

当那位老妇到达医院时,神经科大夫试图用溶栓类药物帮她疏通动脉,但很遗憾,她来的太晚了。第一次扫描过去几小时后,老妇就失去了意识,医生赶紧将她送去 ICU 病房。两个月后,老妇还是没有好转,她的整个左侧身体(从左臂到左腿)都瘫痪了。

从小黑屋出来后,笔者跟着主任去了她的办公室,我想知道医生是怎么学习的,机器也能学会这些方法吗?

能力不是看书得来的

笔者涉足医学诊断行业并不晚,1997 年就在波士顿开始了临床轮转。为了更好地完成工作,我读了一本有关医学教育的经典读物,这本书将诊断行为明确分为四个阶段:第一,医生需要借助病人病历和最新的体检来搜集有关病人的疾病或身体状况的事实;第二,整理以上信息并总结出一份可能病因的综合列表;第三,通过对病人的询问和初步测试完成所谓的“鉴别诊断”,即排除某种疾病的假设并增强另一种疾病的可能性。这一步,还要对疾病是否常见下定义,并结合病人既往病史对风险和暴露情况进行判断(谨记“不可掉以轻心”的临床思维),这样列表中的可能病因就减少了;最后,医生需要重新通过实验室检查、X 光或 CT 扫描来确认假设。数十年来,这些步骤及实践中出现的变体都如实出现在教科书中,我们也从一代代医学院学生的身上看到了这幅图景:他们从症状中寻找病因。