Steffen Haider 表示自己先要学习规则,在书中他得知中风往往发生在一边,组织在 CT 中会轻微“变灰”,且常常伴有略微肿胀,造成解剖边界模糊。“在某些部位,大脑的供血特别脆弱。”他说道。要想认出这些病变,他必须在大脑的一侧寻找那些另一侧没有出现的迹象。
笔者提醒他忽视了图像中很多不对称的情况。这个 CT 扫描与大多数情况一样,在脑部左侧存在其他灰色的波纹,但右侧却没有,它们可能是妇女中风前大脑中的异常运动或潜在变化。他是如何把重点缩小到这片区域的?他停了下来,沉思了一会,随后说道:“我也不知道,有一部分是存在于潜意识里的。”
“对于一个放射学家来说,这是在学习和成长中自然习得的。”Lignelli-Dipple 说道。于是笔者开始思考,机器是否也能用同样的方式进行“学习和成长”。
Thrun 的理想世界
2015 年 1 月,计算机科学家 Sebastian Thrun 开始迷上了医学诊断这个课题。Thrun 在德国长大,他身材消瘦,剃了光头,看起来就像漫画里的人物。Thrun 以前是斯坦福大学教授,领导该校的人工智能实验室,后来他离职创建 Google X,领导会自学的机器人和自动驾驶汽车的研发。但是,他发现自己对有着学习能力的医疗设备有很大的兴趣。Thrun 的母亲因乳腺癌离世,当时她才 49 岁。“大多数癌症病人一开始没有症状。”Thrun 说道。“我母亲就是这样,但当她去看医生时,一切都晚了。因此,我一直想找到一个能尽早发现癌症的方法,毕竟那时我们还能将病人从死亡线上拉回来。机器学习算法在这里能起到作用吗?”
学界关于自动诊断的早期研究往往与教科书上的显性知识紧密相关。以心电图为例,过去的二十年来,电脑解读的通常是这些系统的特征,执行这些工作的程序也比较直接,特征波形与多种情况相关,如心房颤动或血管阻塞。此外,还有识别这些特征波形并输入到应用中的规则。当机器识别到这些特征波形时,它会把这种心跳标记为“心房颤动”。
乳腺癌的检查与心电图类似,眼下“计算机辅助检查”的方式已经不再新鲜。在检查中,模式识别软件会标记那些疑似出现病变的区域,随后医生需要对这些可疑区域进行复查以确定诊断结果是否正确。不过,如今的诊断软件大多数利用的还是基于规则的系统,它们没有自行学习的能力。因此,一个看过 3000 张 X 光片的机器人其实水平跟只看过 4 张的差不多。2007 年的研究进一步证明了这种检测方法的局限性。人们通常认为机器介入后,准确率会明显提高,但事实上机器产生的影响很复杂。在计算机辅助诊断组中,活体检查的准确率上升,但肿瘤学家最希望检测到的小型侵入性乳腺癌准确率却有所降低(后续检测中甚至出现了“假阳性”问题)。
Thrun 相信,他能将第一代诊断设备上基于规则的算法替换为基于学习的算法,这样一来设备就抛弃了“书面知识”,学会了“实践知识”。Thrun 的学习算法还加入了现在最为火热的“神经网络”技术,因为该技术的灵感源于大脑运作的模型,所以它能完成这一学习过程。在大脑中,神经突出会通过反复激活而遭到增强或削弱;这些数字系统旨在通过数学手段实现类似的目的,调整连接的“权重”向预期输出靠拢。更强大的系统会与神经元层级相似,每个系统会分别处理输入的数据并将结果传送给下一层,而这就是我们所说的“深度学习”。
Thrun 首先拿皮肤癌开刀,特别是美国人非常容易罹患的角化细胞癌和黑色素瘤(非诚勿扰 2 里孙红雷得的,最恐怖的皮肤癌)。机器经过学习,能在图片上分清皮肤癌和那些良性皮肤病(如痘痘、皮疹等)吗?“如果皮肤科医生能做到,那么机器肯定也能搞定,而且可能会做得更好。”
通常情况下,关于黑色素瘤的教学会从基于规则的系统开始,就像皮肤病医生入门一样。学习过程中会有一系列便于记忆的符号,如 ABCD。这些符号有其特殊含义,如黑色素瘤通常是不对称的(Asymmetrical),它们的边界(Borders)参差不齐,颜色(Color)呈斑块状,而直径(Diameter)则超过 6 毫米。不过,Thrun 查了医书和网络上的标本后却发现,一些黑色素瘤的的标本并不适用于这些固定的规则。