我们现在的AI可以简单的总结成一个算法,或者是模型,加上数据的方法,这样的方法论使得我们的机器从大量的数据里,比我们人类见的更多的数据里,学到我们人类不能理解的,但是它会优于人类的表示和分类方法。
比如围棋,因为阿尔法狗的出现,我们的围棋专家、围棋选手,自己已经开始突破过去的一些思维框架,向阿尔法狗学习。也下出了在过去认为不太好的棋,但是发现,这样一些棋招反而更好。
所以说,是不是像人?并不是这个算法好或者是不好的标记。比如说人脸识别的系统,现在我们完全不知道机器到底通过这样大量的学习,学出来了什么样的特征,可以做得比别人好。这一点,已经超出了我们人类可以理解的范畴。
人类的机会在哪里?人类的智能,除了算法,我们大脑了有一个算法,有数据的学习之外,我们还有逻辑推理。相比机器,我们的算法和模型是我们自己可以设计的。非常重要的特点是,我们的数据是我们主动收集的,并不是像目前的机器学习算法一样是被动的,你给它什么样的数据,它就学习什么数据。
我们人类在很多时候也有一些非常有趣的特点,比如说我们的视觉智能,有时候我们的错误本身也是我们智能非常重要的一部分。在左边这张图里,大家可以看到的,这个块和这个块的亮度是一样的还是不一样?我相信没有一个人真的可以看出来这两个块的亮度是一样的。如果你觉得这两块的颜色确实一样的话,我相信你的大脑可能出现了问题,需要去看医生。
上面这个块的颜色和这个块的颜色也是一模一样的,但是我们不会有人感知到这样一个正确的结果。事实上,我们可以认为这个世界是我们自己想象出来的。但是,这种想象是目前的机器很难具有的,让机器判断这两个问题,它也可以非常准确的判断出这两个的答案。
我们理性的度量AI的进步,在很多方法我们也需要注意。我们看到了很多的进步,但是都是特定领域的进步,通用的AI还没有出现的迹象。感知能力也是日新月异的,但是我们的认知能力并没有太大的进步。所谓的感知能力就是看的能力、听的能力等。还有一点,我们目前阶段的AI不可以自己学,更不能自己主动的去学。
这意味着当前的AI都是领域、经验、数据依赖的,决定它只能是特定领域的AI。通用的AI军在何方?包括学术界也没有非常准确的答案。
现在必然是一个春秋战国的时代,各个行业的AI应用也会百花齐放,但是大秦统一全国的时刻还远远没有到来,很多行业都需要自己AI引擎的生产能力。
我本人在去年的时候也创立了一家公司,我们称之为中科视拓,我们有一个中西合并的名字,叫C他(音),我们搭建这样一个平台,提供这样的服务,为各行各业的用户、客户,提供基于私有数据,生产自己的AI引擎的能力。我们为华为手机里的人脸识别,包括中国移动、中国平安等一些大的客户提供引擎、赋能的能力。
简单总结一下。在过去几年时间里,感知进步带动了整个AI的热潮,应该说,传统的行业利用AI可以有一个非常好的升级机会,但是通用的AI还需要时日。所以,深度学习在某种意义上来讲,我们认为它需要基础设施化。这也是中科视拓成立的非常重要的目标,希望能够走向AI技术设施化的一条道路,谢谢大家!
登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!