“用人工智能来解决医疗领域的一些问题,其实现在还是一个相对早期的阶段,或者说才刚刚开始。大家已经感觉到人工智能是第四次工业革命,是一个巨大的机遇。有很多公司在从事这个工作。而对于医院或者医生来说,只有部分人看到前景,觉得是个值得关注的领域。可惜进行工作和探索的医生目前还是少数,大多数还在观望阶段。”刘士远说。
陈宽在回国创业的初期也遇到了同样的问题,他告诉澎湃新闻(www.thepaper.cn):“其实创业路上遇到很多挑战非常正常,最开始给我最大压力的,反而不是技术上的问题。更多的是当时去医院谈合作,遇到的医生并不接受。这让我无事可做。”
除了传统观念对新技术的尚不认可外,另一个拦路虎来自数据。对于推想科技来说,为了让自己的模型变得更精准需要和国内一流的医院合作,拿到靠谱的数据;另一方面,如何保证数据安全也需要考虑。在与医院合作上,推想科技利用智能X线辅助筛查产品(AI-DR)、智能CT辅助筛查产品(AI-CT)和智能深度学习科研平台(AI-Scholar),与北京协和医院、上海长征医院、武汉同济医院进行了合作。
据刘士远介绍,目前由他本人牵头的上海市多中心肺癌筛查研究,正在对上海40岁以上上海居民进行肺癌数据统计和筛查。该研究中的1万6千多例的低剂量肺部结节的数据经过脱敏后,“喂”给了机器。所谓脱敏指的是将病人的个人信息抹去,只留下机器需要的内容。借助这样的研究和精准的数据,机器在后期的肺癌识别准确率上才有了较大的提升。
对于机器来说,能拥有科研用研究数据进行训练其实相当幸运。因为更多时候,来自来自与医院临床诊疗的数据更多、更复杂,却不是很有用。这一样来,就需要医生进行输入机器前的精准标记。这对于医院医生来说是一件非常艰苦的过程。因为每个病人的图像按照正常保存的话,都有二百张以上,甚至有的可能有四五百张的图像。
“这些图像需要有人认真的一张张去看、去过滤,看完了以后里面有病灶、有异常再去标记出来,还要确保标记正确,过程非常辛苦。我们有经验的主治医生看一个病人,可能最起码要半个小时以上,你再想想如果要标记6000例病人,我们得花多长时间。有些医生需要坐电脑前面非常长的时间,看得眼花头晕的,还得保障正确率。”刘士远说。他还以小孩子的教育做比喻,解释了数据标记阶段的辛苦。“这其实就像年轻妈妈带孩子,最后孩子考上了耶鲁、剑桥,外人看到了最终结果,却不知道过程艰辛。这个产品在医院上线的时候,大概一秒钟就能看出病人的病症,但是实际前期需要做大量的细致工作。”
AI让医生看片不累,还能平衡医疗资源
俗话说磨刀不误砍柴工。尽管前期数据的标记和输入需要花费大量的时间和精力,但训练好的模型却能给医院的诊疗效果带来巨大的提升。首先是解放了许多医生的劳动力。用机器替代医生对医疗影像进行识别,可以减少医生看片的时间,从而解放了更多医疗资源。让医生能有更多地精力放在与病人沟通上。
“人不是机器,他会疲劳,还要上厕所、吃饭。太疲劳的时候做事情的效率就会下降,然后就有可能会漏诊了甚至误诊。如果出现误诊、漏诊,还有可能会有医疗纠纷。另外,其实医疗影像科的工作就是看图像、写报告、描写病症,这是一个非常枯燥无聊重复的过程。”刘士远说。
其次,人工智能与医疗的结合,未来还能解决落后地区的医疗资源。推想科技与长征医院的合作还在继续,但双发共同打造的诊疗系统最终会形成产品和经验,从而给偏远地区的医院使用。
“现在国家提倡分级诊疗,提倡优质医疗资源下沉。北上广的优质医疗资源不可能到青海,西藏,因为让医生放弃北上海的生活去这些地方去工作不现实。但是如果说因为我们的经验,以及和推想的合作形成了好的人工智能产品,把这个产品用在西藏的阿里地区人民医院,可能得出来的结果是一样的。这就相当于是阿里那边也能够达到长征院子这样的诊断水平,对于全国的老百姓来说是一个巨大福音。”刘士远说。