百万年薪的人才泡沫与人工智能的虚假繁荣

在筛选一家公司是否值得去的时候除了薪资,大牛们往往会思考这些问题:“这个公司已有的人工智能人才是否和我在同一个等级上”、“这家公司所涉及的业务是否对我所研究的课题有帮助”、“从这家公司离开后是否能为我回学术圈或创业带来优势”。

对于人工智能人才择业来说,最忌讳的就是来到一家对自己的学术进展毫无帮助的公司。

胡进是业内的一位深度学习专家,在离开原本的大公司研究院后,被一家国内顶尖的汽车媒体聘用。入职之后,胡进发现这家公司的用户数据尽管巨大,但收集维度仅限于用户在汽车领域的消费和浏览偏好,且受限与公司产品形态不容易拓宽。而公司的产品库主要又是游戏和金融产品,数据与推荐品之间无法建立有效的联系,对学术的帮助也收效甚微。若在此恋战,则有可能断绝回到学术圈的道路。

入职六个月,胡进火速离职。

这也是包括百度和Google在内的许多大公司都留不住人工智能人才的原因:

对于有学术抱负的人来说,商业公司只是暂时的落脚点。拿到数据突破学术瓶颈之后,依然要回到学术圈;

对在学术圈“穷怕了”,奔着赚钱的人来说,如果独立创业后可以以更高的估值被收购回去,那么也是一个不错的选择。

前一类人在人工智能创业公司中占了绝大多数,通过抓取LinkedIn数据,在对格林深瞳、旷视科技、商汤科技、思必驰、云知声、第四范式6家不同细分领域AI创业公司的245名离职员工的分析后,PingWest品玩发现有110名员工回到学术研究机构、大学或无明显商业模式的校办企业。

而对那些真正希望自己的技术转化成一个成熟产品的人工智能科学家来说,并不满足在某个大公司中担任技术岗,他们更愿意在大公司中验证自己的模型和算法之后,去创立独立的公司。这些从大公司出走的人工智能创业者往往起点高,对自己的技术实力和市场的空白有充分的把握,坚信自己创办的公司一定能因为掌握某个关键的技术或环节,日后被大公司收购回去。

不过,任何一个人工智能的顶级人才,都不认为自己是泡沫里的裸泳选手,他们甚至对这个行业是否有泡沫并不关心。因为能够进入这个行业的人,真才实学是前提基础,即便是真的有泡沫,回归学术也是他们一条不错的退路。

这恐怕与大多数商业化的公司以及公司背后的资本意志,对他们的预期不太一样。

与人工智能人才各怀心思相同,招聘他们的公司也分为三类,每一类在给出“百万年薪”的同时有着完全不同的诉求:

第一类是互联网巨头,包括“超第一梯队”的跨国公司Google和微软亚洲研究院,以及第一梯队的巨头——大家熟悉的百度、阿里和腾讯;以及第二梯队的今日头条和滴滴等公司。

第二类是人工智能创业公司,以某种人工智能技术为主营业务的创业公司,典型的如自动驾驶领域的Momenta、地平线、驭势科技;视觉识别领域的格灵深瞳、商汤科技和旷视科技等。

第三类是将人工智能融入到自身业务中的其它创业公司,如学霸君、泼辣熊和智齿科技等。

戴维所在的公司就属于第三类,在这类公司,人工智能是用来升级现有的产品或业务的,所有的人工智能研究以产出为导向,实用性强,“泡沫不高”。

但与传统研发领域的许多大牛一样,这类应用驱动的人工智能团队,往往随着新项目的立项而引入,随着新项目的结项而离职。

这样的公司一般有良好但并不过分充裕的现金流,人才和公司都较为明确的知道自己想要什么。一旦人工智能领域上的投入产出比不够好,项目会被立即停掉,原本引入的技术人才也不会恋战。

在人工智能创业公司——第四范式的“范式大学系列课程”第3篇中,也引用了这样一个实例:一个企业招聘了两名机器学习方向的数据科学家,加起来年薪百万。但在合作了一年之后,科学家和企业相看两厌,最终分手。