IBM赖开文:IBM认知计算在中国金融业落地

下面同样邀请到一位重量级的嘉宾,他是中国大陆第一个沃森落地项目和银行业第一个认知客服项目的实施者,今天他首次就AI+金融发表演讲。让我们有请IBM全球企业咨询服务部认知与分析服务总监赖开文先生,有请。

赖开文:大家上午好,今天很高兴有这样的机会来分享IBM在人工智能(IBM叫认知计算)的观点,以及我说一下,IBM很重要的是在2B的市场,就是帮传统的企业做人工智能的应用和创新。今天从两个方向,第一个是认知计算的发展趋势以及IBM如何本身传统企业在金融行业做一些认知的应用。

我们知道其实AI不是一个新的课题,AI其实从50年代就开始了,到目前60来年的历程。但是这么多年,经过了两个波谷,都是因为AI未能达到人们的预期。第一个是70年代,第二个是80年代。现在其实从机器学习、大数据,甚至到深度学习这样一个大的技术的突破,使得AI来到了一个新的春天,甚至我认为现在是夏天,大家都在非常火热地拥抱这个话题,无论是从新兴的IT企业,还有传统的行业,都在积极地拥抱AI(人工智能)。IBM从2006年推出沃尔的计算系统,2014年推出商用,目前在全球17个行业,已经在人工智能和认知计算领域有了应用。IBM也在2016年的时候宣布,全世界已经达到了,或者计算机行业已经来到了认知的时代。

认知时代其实跟AI是一脉相承的,IBM在谈认知计算或者认知系统的时候,我们主要强调认知系统应该有四大核心的能力:

第一,它能够理解人类的语言,能够理解很多非结构化的数据,包括文本、包括语音、包括图像、包括视频。这些内容能够像人一样去理解里头的真实的含义和分类,等等。这是第一个理解的能力。

第二,认知系统能够推理。传统的计算机你给它输入A,它一定给你一个确定的答案B。但是认知系统不再是这样的,它会根据它所学习到的背景的知识,包括时间、包括地点、包括对象、包括产品、包括很多方面内容,它会给出它认为最合适的一个答案。我举一个例子,其实IBM有一个小机器人,把这个小机器人放到阿姆斯特丹,有人就问他:“你觉得世界上最伟大的足球运动员是谁?”他说:“因为我在阿姆斯特丹,所以我想说是科鲁伊夫。”因为这个机器人有推理的能力,把地点这个环节放到了这个内容当中,所以他会说是科鲁伊夫。所以认知系统很重要的特点就是有推理能力,他根据背景的知识能够选择他的输出或者选择他的答案。

第三,交互。我们的计算机系统原来跟人的交互通常是通过键盘、鼠标来技术交互,非常僵硬。认知系统一大特点,它能够使机器和人的交流像人与人的交流那么顺畅,它能够听说读写,能知道你的意图,当他觉得你的意图不清晰的时候,他会跟你反问、对话、交流。

第四,它可以学习。计算机系统你给他一个A,他一定给你一个B,如果过两天不给你B的时候,你会说他有Bug,但是认知系统最重要的就是学习。学习就是你给他一个A,他会有备选的答案,B1、B2、B3……每一个答案后面对应着很多的证据,因为这些证据会有置信度的排名,他会把置信度最高的给到你。如果你调整这些答案背后的证据,你会补充它、优化它、更新它之后,这些答案所对应的置信度就会有所变化。当某个答案的置信度突破了排名变化的时候,这个时候,认知计算机系统给出的答案最终给你的答案就发生变化,也就意味着认知计算机系统,当你把它所对应的背景知识进行更新训练的时候,它会不断地学习,优化它的答案输出。

刚才谈到四个观点。其实在目前,AI已经发展到一定的阶段,在很多单一的任务上,包括了图像的识别、包括了语音的识别、包括了人脸的识别,其实他们已经接近,甚至超过人类的水平。比方说图像的识别,现在已经不仅仅是速度,在精准度上已经超过人类。在语音识别上头,在某些特定的场景,它其实超过人类了。但是在一些录音比较嘈杂的环境下,它可能没有人类那么灵敏,它抗干扰的能力稍微差一点。但是人脸的识别到现在已经基本没有问题了,我们知道的技术是达到了百分之九十九点几以上的准确度。

我们其实认为,IBM认为,人工智能有三大领域,第一个是交互的提升,第二个是辅助进行更广泛的探索,最后做出更准确的决策的辅助。