又有一个巧合,我现在的爱人当时是我的同学,她在海外时是学金融,我为了追求她就去她班上帮她蹭课,光蹭课没诚意得帮她写作业。帮她写作业时发现金融理论里这一系列理论都非常原始,用excel拖拉拽的方法非常落后,我想能不能用人工智能技术预测呢?当时做了一个尝试用神经网络预测美股的市场,当时把1970年的数据30年的数据放进去,尝试预测周度的成功率,当时周度成功率达到60%左右,后来一直从事这方面的尝试,到今天差不多十年时间。现在天弘基金做的新的尝试又在哪些领域有新的发现呢后面也跟大家分享一下。
首先人工智能自己本身有三大件,硬件算法和大数据,天弘基金做的是什么?我们不是一家硬件公司,也不是算法公司,更多做的是金融的大数据或者金融的样本。我之所以加入天弘基金我非常认可天弘基金在阿里巴巴整个文化下面有非常开放包容的心态,我们能够拿到很多数据。很多人知道天弘基金是因为余额宝,余额宝管理15000亿资产有3亿用户,平均每5个中国人当中有一个是我们的用户。在这样一个庞大用户群体下我们有很多数据,在这样数据的基础下可以做很多的AI的研究和尝试,比如对宏观的经济预测对产业的预测,不是仅仅停留在以前理论层面上,而可以通过数据来进行一些探索。
下面这幅图是股票投资研究体系的流程,一家基金公司如果选出一支好的股票是怎么选的。这个图我一直在思考,到底有多少环节能够被AI所替代,换句话说有多少环节必须需要人来处理,这个我现在没有明确的答案,也是我一直思考的话题。
就我自身来看有很多环节,不低于50%以上的工作岗位在AI的时代可能需要重新定义和升级。如果不在AI的时代中进步很可能在AI时代下被淘汰。传统金融挣的钱一个是牌照、一个是信息不对称,专业的人知道,但散户不知道,互联网时代、大数据时代把信息不对称已经极大地降低了,很多人可以通过社交媒体了解公司的情况,不是非得依赖这样的金融机构。金融机构在信息时代的优势到底在哪儿?
作为天弘基金一家专业的金融机构,尤其是在阿里巴巴旗下一个非常重要的金融板块,天弘基金一直倡导的价值观也是创新和尝试。非常有幸,我加入时是一个技术人员,一直在用技术做余额宝和相关数据的挖掘。但是在2015年时有机会给我30分钟在公司500人面前的演讲,当时我们董事长支付宝董事长井贤栋也在场,我说明年会有一场非常重要的事件AlphaGo,我预测AlphaGo可能会赢得世界冠军,当时已经在欧洲赢了樊辉,我们2015年时开始计划。2015年时我们尝试用AI替代初级信用分析师,金融行业有信用分析师读新闻、公司相关信息,这些信息读完之后要进行分析和加工,这些工作对我看来用人来说,尤其公司招的很多人是北大、清华以前考试都是高考状元,让他们做这些工作有资源上的浪费。后来我们尝试了一些应用,可以公开说的应用是鹰眼,这个已经拿到专利,也是对外公开。
这个专利是公募基金第一块国家信用装置,是信用评估方法的装置。鹰眼评估算法是怎么做的?当时找信用分析师一块读新闻,读了10万条新闻,拿其中八万条新闻放到鹰眼算法里。先做分词再分类,分正面、中立、负面,拿剩下两万条让AI评价一下,剩下2万条自己知道答案,8万条当时在时花了很多时间、很多资源,样本收集整理花了三个多月的时间,剩下两万条新闻AI看5分钟就看完了。如果它5分钟看完和人看完的结果一样,我们就没必要看了。
第一版算法没有经过任何优化时,准确覆盖率在85%左右,当时我们非常惊讶,原来这个套路这么深,模式这么明显。所以后来就尝试继续提升算法,到今天做了两年的提升,除了SBM当时第一版入门的算法,尝试了十余种算法,升级了机器,利用阿里云的优势。
现在这个算法提升到96.7%的水平,绝大多数的新闻现在在外面新闻不用自己在网上看,基本看鹰眼看完之后的二次信息。
简单说看新闻这件事情到底对金融有什么影响,这后面是数据。从2015年开始开发到2016年一整年,难得是一整年的实际数据,2016年时开始有信用债违约,也就是说有公司不还钱,以前把钱借给公司肯定要还钱,2016年国企、央企开始不还款了。2016年一共有79家企业不还款或说违约,鹰眼算法把发债4000家公司做了排名,从最容易违约到最安全的,排名之后前1%认为是黑名单,10%是灰名单。这79家公司80%都在会名单里,从这个结果也可以看得出来,在互联网上通过这些新闻分词、语义、ALP包括情绪识别,已经可以胜任信用分析师,而且是非常高级信用分析师团队的能力。