经常有人问天弘基金管理15000亿到底有多少人,信用分析团队包括固定收益团队都不大,在业内只能说是一个中游水平的体量。之所以能够用这么少人管理这么多的资产,主要因为有自动化的技术。
时间原因再说一个简单的尝试,这个尝试是2016年发布利用人工智能选股票的模型,叫“智树”,定增投资是一级市场二级市场间的投资一级半投资。这块想尝试以前没有发现的收益模式,在这块怎么做的呢?首先定增的收益用金融的经验去拆解发现,定增收益70%收益来自于折价,本来买的便宜。还有20%因为大盘涨幅,整体涨了赚钱了,还有10%因为选择的这家公司比其他公司好,AI做最难超额收益的部分。比如长城公司长安汽车哪家好?这个问题让AI回答。
首先喂它很多大数据因子,1000多因子库人工筛选出一些因子,包括认知时间、财务情况、能拿到的公开信息、互联网上的评价,甚至机构的持仓别人买多少,能想到的都放进去。大概142个因子把它放到模型里,剩下把我们这些股票的样本1117支定增样本切分成好的股票、差的股票用模式识别匹配,到底好的股票坏的股票差异在哪里。
最后发现用这样的模式做完之后,第一版非常好,用各种各样的算法,后来发现很麻烦一个事是没法解释,如果没办法解释会不会把自己管理的资产,几十亿上百亿资产交给软件决策?这个问题非常难。最终我们觉得还是要用相对百合一点的算法来用,最后算法降成决策树。决策树解释非常好,完整地看AI怎么思考,顾一个人对他不信任,问他怎么想的跟我们说一说。顾AI投资经理,问他怎么选股票,他打出神经网络函数和权重根本看不懂,我们需要雇佣的AI投资经理能清楚说出为什么投这个,在未来世界上大家磨合越来越好之后,信任建立之后,说不定不需要他去解释了,现阶段需要把自己的思考解释清楚,其中说得最清楚的算法是决策树。
决策树我们也做了剪枝,打出决策树,13层决策树清晰看出,一支股票放进去最后给出两个建议左边买右边不买,看到底买不买,建议中间路径看得很清楚,可以做服务决策。整个提供多少收益?年化收益提高20%左右,提升是非常明显的。
整个模式经过一年的观察,虽然整个定增的投资在监管的环境变化下,定增投资并不是那么受欢迎,但就这个事情和就这个研究的结果,可以证明用AI去选择股票投资,在有金融经验数据的样本下,在做一些合理的加工和糅合,它比人做决策要更理性。
除了做一些创新之外,我们也想为已有的金融决策提供更好的辅助,所以我就在公司内部做了智能投资实验室,实验室很简单就是一个搜索框,把想投的公司输进去,会回复所有公司相关的财务信息,专门的AI看财报好不好,跟其他人比好不好,看新闻的这家公司最新上的什么产品,还有公司相关基本面数据,如牧源股份看股票价格怎么样,存栏量怎么样,整个事情考虑为了让大家更好了解这个,我把其中几个截图拿出来看一下,做一些产业的地图。
整体研究的经验和成果就分享到这,整个AI在金融行业应用是大势所趋,顶级金融机构包括摩根、高盛都大量增加自己在工程和科技方面的投入,包括天弘基金也说我们也是一家科技公司、一家互联网公司,我做一个大胆预测,未来十年AI在我们这个行业发展最快的十年,我也非常荣幸能够在自己的职业生涯当中碰到蓬勃发展的十年,与大家共同努力。
谢谢大家!
登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!